Citation: Lin Ye, Du Daming. Recent Advances in Squaramide-Catalyzed Asymmetric Cascade Reactions for the Synthesis of Spirooxindoles[J]. Chinese Journal of Organic Chemistry, ;2020, 40(10): 3214-3236. doi: 10.6023/cjoc202005065 shu

Recent Advances in Squaramide-Catalyzed Asymmetric Cascade Reactions for the Synthesis of Spirooxindoles

  • Corresponding author: Du Daming, dudm@bit.edu.cn
  • Received Date: 23 May 2020
    Revised Date: 13 June 2020
    Available Online: 19 June 2020

Figures(28)

  • Chiral spirooxindoles have captured huge attention from researchers in the area of organic chemistry and medicinal chemistry owing to their prevalence in various alkaloid natural products and pharmacologically active agents. In recent year, chiral bifunctional squaramide-catalyzed asymmetric cascade reaction of oxindoles or oxindole derivatives has become an efficient synthetic method for the construction of chiral spirooxindoes. In this review, the remarkable progress and advances in bifunctional squaramide-catalyzed asymmetric cascade reactions for the synthesis of spirooxindole derivatives from 2015 are summarized and discussed based on the different types of catalytic reactions.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      (a) Vine, K. L.; Matesic L.; Locke, J. M.; Ranson, M.; Skropeta, D. Anti-Cancer Agents Med. Chem. 2009, 9, 397.
      (b) Arun, Y.; Bhaskar, G.; Balachandran, C.; Ignacimuthu, S.; Perumal, P. T. Bioorg. Med. Chem. Lett. 2013, 23, 1839.
      (c) Das, D.; Banerjee, R.; Mitra, A. J. Chem. Pharm. Res. 2014, 6, 108.
      (d) Bian, Z.; Marvin, C. C.; Pet-tersson, M.; Martin, S. F. J. Am. Chem. Soc. 2014, 136, 14184.
      (e) Kathirvelan, D.; Haribabu, J.; Reddy, B. S. R.; Balachandran, C.; Duraipandiyan, V. Bioorg. Med. Chem. Lett. 2015, 25, 389.

    4. [4]

      (a) Hong L, Wang R. Adv. Synth. Catal. 2013, 355, 1023.
      (b) Mei, G.-J.; Shi, F. Chem. Commun. 2018, 54, 6607.

    5. [5]

    6. [6]

      Malerich, J. P.; Hagihara, K.; Rawal, V. H. J. Am. Chem. Soc. 2008, 130, 14416.  doi: 10.1021/ja805693p

    7. [7]

      (a) Storer, R. I.; Aciro, C.; Jones, L. H. Chem. Soc. Rev. 2011, 40, 2330.
      (b) Rouf, A.; Tanyeli, C. Curr. Org. Chem. 2016, 20, 2996.
      (c) Han, X.; Zhou, H.-B.; Dong, C. Chem. Rec. 2016, 16, 897.

    8. [8]

      Chauhan, P.; Mahajan, S.; Kaya, U.; Hack, D.; Enders, D. Adv. Synth. Catal. 2015, 357, 253.  doi: 10.1002/adsc.201401003

    9. [9]

      Chen, W.-B.; Wu, Z.-J.; Hu, J.; Cun, L.-F.; Zhang, X.-M.; Yuan, W.-C. Org. Lett. 2011, 13, 2472.  doi: 10.1021/ol200724q

    10. [10]

      (a) Han, W.-Y.; Li, S.-W.; Wu, Z.-J.; Zhang, X.-M.; Yuan, W.-C. Chem.-Eur. J. 2013, 19, 5551.
      (b) Chen, Q.; Liang, J.; Wang, S.; Wang, D.; Wang, R. Chem. Commun. 2013, 49, 1657.
      (c) Tan, F.; Lu, L.-Q.; Yang, Q.-Q.; Guo, W.; Bian, Q.; Chen, J.-R.; Xiao, W.-J. Chem.-Eur. J. 2014, 20, 3415.
      (d) Wang, L.-Q.; Yang, D.-X.; Li, D.; Liu, X.-H.; Zhao, Q.; Zhu, R.-R.; Zhang, B.-Z.; Wang, R. Org. Lett. 2015, 17, 4260.

    11. [11]

      Liu, L.; Zhao, B.-L.; Du, D.-M. Eur. J. Org. Chem. 2016, 2016, 4711.

    12. [12]

      Du, D.; Jiang, Y.; Xu, Q.; Li, X.-G.; Shi, M. ChemistryOpen 2016, 5, 311,  doi: 10.1002/open.201600034

    13. [13]

      Kayal, S.; Mukherjee, S.; Org. Biomol. Chem. 2016, 14, 10175.  doi: 10.1039/C6OB02187E

    14. [14]

      Lin, Y.; Liu, L.; Du, D.-M. Org. Chem. Front. 2017, 4, 1229.  doi: 10.1039/C6QO00852F

    15. [15]

      Lin, N.; Long, X.-W.; Chen, Q.; Zhu, W.-R.; Wang, B.-C.; Chen, K.-B.; Jiang, C.-W.; Weng, J.; Lu, G. Tetrahedron 2018, 74, 3734.  doi: 10.1016/j.tet.2018.05.052

    16. [16]

      Song, Y.-X.; Du, D.-M. Synthesis 2018, 50, 1535.  doi: 10.1055/s-0036-1591527

    17. [17]

      Zhu, W.-R.; Chen, Q.; Lin, N.; Chen, K.-B.; Zhang, Z.-W.; Fang, G.; Weng, J.; Lu, G. Org. Chem. Front. 2018, 5, 1375.  doi: 10.1039/C8QO00044A

    18. [18]

      (a) Zhao, B.-L.; Lin, Y.; Du, D.-M. Adv. Synth. Catal. 2019, 361, 3387.
      (b) Lin, Y.; Zhao, B.-L.; Du, D.-M. J. Org. Chem. 2019, 84, 10209.

    19. [19]

      Chen, J.; Huang, B.-Q.; Wang, Z.-Q.; Zhang, X.-J.; Yan, M. Org. Lett. 2019, 21, 9742.  doi: 10.1021/acs.orglett.9b03911

    20. [20]

      Li, J.-H.; Feng, T.-F.; Du, D.-M. J. Org. Chem. 2015, 80, 11369.  doi: 10.1021/acs.joc.5b01940

    21. [21]

      Song, Y.-X.; Du, D.-M. Org. Biomol. Chem. 2019, 17, 5375.  doi: 10.1039/C9OB00998A

    22. [22]

      Wen, J.-B.; Du, D.-M. Org. Biomol. Chem. 2020, 18, 1647.  doi: 10.1039/C9OB02663K

    23. [23]

      Zhao, B.-L.; Du, D.-M. Chem. Commun. 2016, 52, 6162.  doi: 10.1039/C6CC00705H

    24. [24]

      Zhao, B.-L.; Du, D.-M. Adv. Synth. Catal. 2016, 358, 3992.  doi: 10.1002/adsc.201600782

    25. [25]

      Vagh, S. S.; Karanam, P.; Liao, C.-C.; Lin, T.-H.; Liou, Y.-C.; Edukondalu, A.; Chen, Y.-R.; Lin, W. Adv. Synth. Catal. 2020, 362, 1.  doi: 10.1002/adsc.201901597

    26. [26]

      Chaudhari, P. D.; Hong, B.-C.; Wen, C.-L.; Lee, G.-H. ACS Omega 2019, 4, 655.  doi: 10.1021/acsomega.8b03049

    27. [27]

      Chen, L.; Wu, Z.-J.; Zhang, M.-L.; Yue, D.-F.; Zhang, X.-M.; Xu, X.-Y.; Yuan, W.-C. J. Org. Chem. 2015, 80, 12668.  doi: 10.1021/acs.joc.5b02253

    28. [28]

      Ming, S.; Zhao, B.-L.; Du, D.-M. Org. Biomol. Chem. 2017, 15, 6205.  doi: 10.1039/C7OB01307H

    29. [29]

      Yang, Z.-T.; Zhao, J.; Yang, W.-L.; Deng, W.-P. Org. Lett. 2019, 21, 1015.  doi: 10.1021/acs.orglett.8b04039

    30. [30]

      Sun, Q.-S.; Zhu, H.; Chen, Y.-J.; Yang, X.-D.; Sun, X.-W.; Lin, G.-Q. Angew. Chem., Int. Ed. 2015, 54, 13253.  doi: 10.1002/anie.201506206

    31. [31]

      Wang, C.-C.; Huang, J.; Li, X.-H.; Kramer, S.; Lin, G.-Q.; Sun, X.-W. Org. Lett. 2018, 20, 2888.  doi: 10.1021/acs.orglett.8b00927

    32. [32]

      Kumarswamyreddy, N.; Kesavan, V. Org. Lett. 2016, 18, 1354.  doi: 10.1021/acs.orglett.6b00287

    33. [33]

      Lin, Y.; Zhao, B.-L.; Du, D.-M. J. Org. Chem. 2018, 83, 7741.  doi: 10.1021/acs.joc.8b00632

    34. [34]

      Zhao, B.-L.; Du, D.-M. Asian J. Org. Chem. 2015, 4, 1120.  doi: 10.1002/ajoc.201500306

    35. [35]

      Tang, Q.-G.; Cai, S.-L.; Wang, C.-C.; Lin, G.-Q.; Sun, X.-W. Org. Lett. 2020, 22, 3351.  doi: 10.1021/acs.orglett.0c00779

    36. [36]

      Zhao, B.-L.; Du, D.-M. Org. Lett. 2018, 20, 3797.  doi: 10.1021/acs.orglett.8b01389

    37. [37]

      (a) Moyano, A.; Rios, R. Chem. Rev. 2011, 111, 4703.
      (b) Kaur, A.; Singh, B.; Vyas, B.; Silakari, O. Eur. J. Med. Chem. 2014, 79, 282.
      (c) Adrio, J.; Carretero, J. C. Chem. Commun. 2014, 50, 12434.

    38. [38]

      Zhao, H.-W.; Yang, Z.; Meng, W.; Tian, T.; Li, B.; Song, X.-Q.; Chen, X.-Q.; Pang, H.-L. Adv. Synth. Catal. 2015, 357, 2492.  doi: 10.1002/adsc.201500162

    39. [39]

      Sun, Q.-T.; Li, X.-Y.; Su, J.-H.; Zhao, L.; Ma, M.-X.; Zhu, Y.-Y.; Zhao, Y.-Y.; Zhu, R.-R.; Yan, W.-J.; Wang, K.-R.; Wang, R. Adv. Synth. Catal. 2015, 357, 3187.  doi: 10.1002/adsc.201500416

    40. [40]

      Ma, M.-X.; Zhu, Y.-Y.; Sun, Q.-T.; Li, X.-Y.; Su, J.-H.; Zhao, L.; Zhao, Y.-Y.; Qiu, S.; Yan, W.-J.; Wang, K.-Y.; Wang, R. Chem. Commun. 2015, 51, 8789.  doi: 10.1039/C4CC10216A

    41. [41]

      You, Y.; Lu, W.-Y.; Wang, Z.-H.; Chen, Y.-Z.; Xu, X.-Y.; Zhang, X.-M.; Yuan, W.-C. Org. Lett. 2018, 20, 4453.  doi: 10.1021/acs.orglett.8b01730

    42. [42]

      Chen, F.-Y.; Xiang, L.; Zhan, G.; Liu, H.; Kang, B.; Zhang, S.-C.; Peng, C.; Han, B. Tetrahedron Lett. 2020, 61, 151806.  doi: 10.1016/j.tetlet.2020.151806

    43. [43]

      Huang, W.-J.; Chen, Q.; Lin, N.; Long, X.-W.; Pan, W.-G.; Xiong, Y.-S.; Weng, J.; Lu, G. Org. Chem. Front. 2017, 4, 472.  doi: 10.1039/C6QO00723F

    44. [44]

      Song, Y.-X.; Du, D.-M. J. Org. Chem. 2018, 83, 9278.  doi: 10.1021/acs.joc.8b01245

    45. [45]

      Zhao, X.; Xiong, J.; An, J.; Yu, J.; Zhu, L.; Feng, X.; Jiang, X.; Org. Chem. Front. 2019, 6, 1989.  doi: 10.1039/C9QO00452A

    46. [46]

      Wang, C.; Wen, D.; Chen, H.; Deng, Y.; Liu, X.; Liu, X.; Wang, L.; Gao, F.; Guo, Y.; Sun, M.; Wang, K.; Yan, W. Org. Biomol. Chem. 2019, 17, 5514.  doi: 10.1039/C9OB00720B

    47. [47]

      Su, J.; Ma, Z.; Li, X.; Lin, L.; Shen, Z.; Yang, P.; Li, Y.; Wang, H.; Yan, W.; Wang, K.; Wang, R. Adv. Synth. Catal. 2016, 358, 3777.  doi: 10.1002/adsc.201600688

    48. [48]

      Zhu, W.-R.; Zhang, Z.-W.; Huang, W.-H.; Lin, N.; Chen, Q.; Chen, K.-B.; Wang, B.-C.; Weng, J.; Lu, G. Synthesis 2019, 51, 1969.  doi: 10.1055/s-0037-1612089

    49. [49]

      Han, J.-L.; Chang, C.-H. Chem. Commun. 2016, 52, 2322.  doi: 10.1039/C5CC08883F

    50. [50]

      Han, J.-L.; Tsai, Y.-D.; Chang, C.-H. Adv. Synth. Catal. 2017, 359, 4043.  doi: 10.1002/adsc.201701104

    51. [51]

      Cheng, P.; Guo, W.; Chen, P.; Liu, Y.; Du, X.; Li, C. Chem. Commun. 2016, 52, 3418.  doi: 10.1039/C5CC10292H

    52. [52]

      Feng, B.-X.; Yang, J.-D.; Li, J.; Li, X. Tetrahedron Lett. 2016, 57, 3457.  doi: 10.1016/j.tetlet.2016.06.084

    53. [53]

      Huang, L.-J.; Weng, J.; Wang, S.; Lu, G. Adv. Synth. Catal. 2015, 357, 993.  doi: 10.1002/adsc.201400780

    54. [54]

      Sun, Q.-S.; Chen, X.-Y.; Zhu, H.; Lin, H.; Sun, X.-W.; Lin, G.-Q. Org. Chem. Front. 2015, 2, 110.  doi: 10.1039/C4QO00299G

    55. [55]

      Sun, Q.-S.; Lin, H.; Sun, X.; Sun, X.-W. Tetrahedron Lett. 2016, 57, 5673.  doi: 10.1016/j.tetlet.2016.11.019

    56. [56]

      Ren, J.-W.; Zheng, L.; Ye, Z.-P.; Deng, Z.-X.; Xie, Z.-Z.; Xiao, J.-A.; Zhu, F.-W.; Xiang, H.-Y.; Chen, X.-Q.; Yang, H. Org. Lett. 2019, 21, 2166.  doi: 10.1021/acs.orglett.9b00477

    57. [57]

      Zhao, B.-L.; Du, D.-M. Adv. Synth. Catal. 2019, 361, 3412.  doi: 10.1002/adsc.201900218

    58. [58]

      Balha, M.; Mondal, B.; Pan, S. C. Org. Biomol. Chem. 2019, 17, 6557.  doi: 10.1039/C9OB01199D

  • 加载中
    1. [1]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    2. [2]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    3. [3]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    4. [4]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    5. [5]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    6. [6]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    7. [7]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    8. [8]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    9. [9]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    10. [10]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    11. [11]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    12. [12]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    13. [13]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    14. [14]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    15. [15]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    16. [16]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    17. [17]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    18. [18]

      Houjin Li Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016

    19. [19]

      Shuixing Dai Jilei Jiang Yuxiao Wang Jinqi Hu Minghua Huang . Application of Knoevenagel Reaction in Organic Chemistry Teaching. University Chemistry, 2025, 40(5): 334-341. doi: 10.12461/PKU.DXHX202405208

    20. [20]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

Metrics
  • PDF Downloads(29)
  • Abstract views(1922)
  • HTML views(372)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return