Citation: Sun Shangzheng, Wang Xing, Cheng Taijin, Xu Hui, Dai Huixiong. Cu(II)-Mediated β-C—H Alkynylation of Acrylamides with Terminal Alkynes[J]. Chinese Journal of Organic Chemistry, ;2020, 40(10): 3371-3379. doi: 10.6023/cjoc202005064 shu

Cu(II)-Mediated β-C—H Alkynylation of Acrylamides with Terminal Alkynes

  • Corresponding author: Dai Huixiong, 
  • Received Date: 23 May 2020
    Revised Date: 20 June 2020
    Available Online: 8 July 2020

    Fund Project: the Science and Technology Commission of Shanghai Municipality 17JC1405000the National Natural Science Foundation of China 21772211Project supported by the National Natural Science Foundation of China (No. 21772211), the Youth Innovation Promotion Association CAS (Nos. 2014229, 2018293), and the Science and Technology Commission of Shanghai Municipality (No. 17JC1405000)the Youth Innovation Promotion Association CAS 2014229the Youth Innovation Promotion Association CAS 2018293

Figures(4)

  • Cu(Ⅱ)-mediated β-C-H alkynylation of acrylamides with terminal alkynes is described by employing amide-oxazoline bidentate auxiliary, forming the conjugated 1, 3-enynes. This protocol is characterized by its mild conditions, broad substarate scope and excellent regio- and stereo-selectivity.
  • 加载中
    1. [1]

      For selected examples, see:
      (a) Nussbaumer, P.; Leitner, I.; Mraz, K.; Stütz, A. J. Med. Chem. 1995, 38, 1831.
      (b) Saito, S.; Yamamoto, Y. Chem. Rev. 2000, 100, 2901.
      (c) Rudi, A.; Schleyer, M.; Kashman, Y. J. Nat. Prod. 2000, 63, 1434. (d) Liu, Y.; Nishiura, M.; Wang, Y.; Hou, Z. J. Am. Chem. Soc. 2006, 128, 5592.

    2. [2]

      Daly, J. W.; Karle, I.; Myers, C. W.; Tokuyama, T.; Waters, J. A.; Witkop, B. Proc. Natl. Acad. Sci U. S. A. 1971, 68, 1870.

    3. [3]

      Iverson, S. L.; Uetrecht, J. P. Chem. Res. Toxicol. 2001, 14, 175.  doi: 10.1021/tx0002029

    4. [4]

      Zein, N.; Sinha, A. M.; McGahren, W. J. Ellestad, G. A. Science 1988, 240, 11988.

    5. [5]

      Selected examples:
      (a) Miki, K.; Nishino, F.; Ohe, K.; Uemura, S. J. Am. Chem. Soc. 2002, 124, 5260.
      (b) Kawasaki, T.; Saito, S.; Yamamoto, Y. J. Org. Chem. 2002, 67, 2653.
      (c) Lee, S.; Lee, T.; Lee, Y. M.; Kim, D.; Kim, S. Angew. Chem., Int. Ed. 2007, 46, 8422.
      (d) Zhang, W.; Xu, H.; Xu, H. Tang, W. J. Am. Chem. Soc. 2009, 131, 3832.
      (e) Nishimura, A.; Ohashi, M.; Ogoshi, S. J. Am. Chem. Soc. 2012, 134, 15692.
      (f) Ma, K.; Miao, Y.; Gao, X.; Chao, J.; Zhang, X.; Qin, X.-M. Chin. Chem. Lett. 2017, 28, 1035.

    6. [6]

      Zhou, Y.; Zhang, Y.; Wang, J. Org. Biomol. Chem. 2016, 14, 6638.  doi: 10.1039/C6OB00944A

    7. [7]

      (a) Sonogashira, K. J. Organomet. Chem. 2002, 653, 46.
      (b) Negishi, E.; Anastasia, L. Chem. Rev. 2003, 103, 1979.
      (c) Plenio, H. Angew. Chem., Int. Ed. 2008, 47, 6954.
      (d) Chinchilla, R.; Najera, C. Chem. Soc. Rev. 2011, 40, 5084.

    8. [8]

      Reviews for transition metal catalyzed C-H activation, see:
      (a) Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074.
      (b) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094.
      (c) Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J.-Q. Chem. Soc. Rev. 2009, 38, 3242.
      (d) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
      (e) Gandeepan, P.; Müller, T.; Zell, D.; Cera, G.; Warratz, S.; Ackermann, L. Chem. Rev. 2019, 119, 2192.
      (f) Rej, S.; Ano, Y.; Chatani, N. Chem. Rev. 2020, 120, 1788.
      (g) Wang, Q.; Gu, Q.; You, S. L. Acta Chim. Sinica 2019, 77, 690(in Chinese).
      (王强, 顾庆, 游书力, 化学学报, 2019, 77, 690.)
      (h) Guan, H.; Chen, L.; Liu, L. Acta Chim. Sinica 2018, 76, 440(in Chinese).
      (关弘浩, 陈磊, 刘磊, 化学学报, 2018, 76, 440.)
      (i) Li, X.; Liang, G.; Shi, Z. Chin. J. Chem. 2020, 38, 929.

    9. [9]

      Examples for olefinic C-H alkynylation with alkynyl halides, see:
      (a) Collins, K. D.; Lied, F.; Glorius, F. Chem. Commun. 2014, 50, 4459.
      (b) Feng, C.; Feng, D.; Loh, T.-P. Chem. Commun. 2014, 50, 9865.
      (c) Feng, C.; Feng, D.; Luo, Y.; Loh, T.-P. Org. Lett. 2014, 16, 5956.
      (d) Xu, Y.-H.; Zhang, Q.-C.; He, T.; Meng, F.-F.; Loh, T.-P. Adv. Synth. Catal. 2014, 356, 1539.
      (e) Finkbeiner, P.; Kloeckner, U.; Nachtsheim, B. J. Angew. Chem., Int. Ed. 2015, 54, 4949.
      (f) Tan, E.; Quino-nero, O.; Elena de Orbe, M.; Echavarren, A. M. ACS Catal. 2018, 8, 2166.

    10. [10]

      For C-H alkynylation of arenes with terminal alkynes:
      (a) Wei, Y.; Zhao, H.; Kan, J.; Su, W.; Hong, M. J. Am. Chem. Soc. 2010, 132, 2522.
      (b) de Haro, T.; Nevado, C. J. Am. Chem. Soc. 2010, 132, 1512.
      (c) Jie, X.; Shang, Y.; Hu, P.; Su, W. Angew. Chem., Int. Ed. 2013, 52, 3630
      (d) Zhou, J.; Shi, J.; Qi, Z.; Li, X.; Xu, H. E. Yi, W. ACS Catal. 2015, 5, 6999.
      (e) Liu, Y.-J.; Liu, Y.-H.; Yin, X.-S.; Gu, W.-J.; Shi, B.-F. Chem.- Eur. J. 2015, 21, 205.
      (f) Tian, C.; Dhawa, U.; Scheremetjew, A.; Ackermann, L. ACS Catal. 2019, 9, 7690.

    11. [11]

      (a) Zhao, T.; Qin, D.; Han, W.; Yang, S.; Feng, B.; Gao, G.; You, J. Chem. Commun. 2019, 55, 6118.
      (b) Hadi, V.; Yoo, K. S.; Jeong, M.; K. Jung, W. Tetrahedron Lett. 2009, 50, 2370.
      (c) Shao, Y.-L.; Zhang, X.-H.; Han, J.-S.; Zhong, P. Org. Lett. 2012, 14, 5242.

    12. [12]

      Select reviews for Cu-catalyzed C-H functionalization, see:
      (a) Liu, J.; Chen, G.; Tan, Z. Adv. Synth. Catal. 2016, 358, 1174.
      (b) Rao, W.-H.; Shi, B.-F. Org. Chem. Front. 2016, 3, 1028.
      (c) Shang, M.; Sun, S.-Z.; Wang, M.; Wang, H.-Li.; Dai, H.-X. Synthesis 2016, 48, 4381.

    13. [13]

      (a) Shang, M.; Sun, S.-Z.; Dai, H.-X.; Yu, J.-Q. J. Am. Chem. Soc. 2014, 136, 3354.
      (b) Shang, M.; Sun, S.-Z.; Wang, H.-Li.; Laforteza, B. N.; Dai, H.-X.; Yu, J.-Q. Angew. Chem., Int. Ed. 2014, 53, 10439.
      (c) Shang, M.; Sun, S.-Z.; Dai, H.-X.; Yu, J.-Q. Org. Lett. 2014, 16, 5666.
      (d) Wang, H.-L.; Shang, M.; Sun, S.-Z.; Zhou, Z.-L.; Laforteza, B. N.; Dai, H.-X.; Yu, J.-Q. Org. Lett. 2015, 17, 1228.
      (e) Sun, S.-Z; Shang, M.; Wang, H.-L.; Lin, H.-X.; Dai, H.-X.; Yu, J.-Q. J. Org. Chem. 2015, 80, 8843.
      (f) Shang, M.; Shao, Q.; Sun, S.-Z.; Chen, Y.-Q.; Dai, H.-X.; Yu, J.-Q. Chem. Sci. 2017, 8, 1469.
      (g) Xu, L.; Wang, X.; Ma, B.; Yin, M.-X.; Lin, H.-X.; Dai, H.-X.; Yu, J.-Q. Chem. Sci. 2018, 9, 5160.
      (h) Sun, S.-Z.; Xu, H.; Dai, H.-X. Chin. Chem. Lett. 2019, 30, 969.
      (i) Sun, S.-Z.; Shang, M.; Xu, H.; Cheng, T.-J.; Li, M.-H.; Dai, H.-X. Chem. Commun. 2020, 56, 1444.

    14. [14]

      (a) Shang, M.; Wang, H.-L.; Sun, S.-Z.; Dai, H.-X.; Yu, J.-Q. J. Am. Chem. Soc. 2014, 136, 11590.
      (b) Shang, M.; Wang, M.-M.; Saint-Denis, T. G.; Li, M.-H.; Dai, H.-X.; Yu, J.-Q. Angew. Chem., Int. Ed. 2017, 56, 5317.

    15. [15]

      (a) Suess, A. M.; Ertem, M. Z.; Cramer, C. J.; Stahl, S. S. J. Am. Chem. Soc. 2013, 135, 9797.
      (b) Nishino, M.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem., Int. Ed. 2013, 52, 4457.

  • 加载中
    1. [1]

      Qi LiZi-Lu WangYun-He Xu . Copper-catalyzed 1,4-silylcyanation of 1,3-enynes: A silyl radical-initiated approach for synthesis of difunctionalized allenes. Chinese Chemical Letters, 2025, 36(3): 109991-. doi: 10.1016/j.cclet.2024.109991

    2. [2]

      Liangfeng YangLiang ZengYanping ZhuQiuan WangJinheng Li . Copper-catalyzed photoredox 1,4-amidocyanation of 1,3-enynes with N-amidopyridin-1-ium salts and TMSCN: Facile access to α-amido allenyl nitriles. Chinese Chemical Letters, 2024, 35(11): 109685-. doi: 10.1016/j.cclet.2024.109685

    3. [3]

      Wujun JianMong-Feng ChiouYajun LiHongli BaoSong Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980

    4. [4]

      He YaoWenhao JiYi FengChunbo QianChengguang YueYue WangShouying HuangMei-Yan WangXinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076

    5. [5]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    6. [6]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    7. [7]

      Guang XuCuiju ZhuXiang LiKexin ZhuHao Xu . Copper-catalyzed asymmetric [4+1] annulation of yne–allylic esters with pyrazolones. Chinese Chemical Letters, 2025, 36(4): 110114-. doi: 10.1016/j.cclet.2024.110114

    8. [8]

      Zhirong YangShan WangMing JiangGengchen LiLong LiFangzhi PengZhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518

    9. [9]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    10. [10]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    11. [11]

      Yan-Bo LiYi LiLiang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294

    12. [12]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    13. [13]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    14. [14]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    15. [15]

      Yujia ShiYan QiaoPengfei XieMiaomiao TianXingwei LiJunbiao ChangBingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544

    16. [16]

      Jinpeng DuJunlin ChenYulong ShanTongliang ZhangYu SunZhongqi LiuXiaoyan ShiWenpo ShanYunbo YuHong He . Insight into the effects of C3H6 on fresh and hydrothermally aged Cu-SSZ-39 catalysts. Chinese Chemical Letters, 2025, 36(3): 110019-. doi: 10.1016/j.cclet.2024.110019

    17. [17]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    18. [18]

      Yu XiongLi-Jun HuJian-Guo SongDi ZhangYi-Shuang PengXiao-Jun HuangJian HongBin ZhuWen-Cai YeYing Wang . Structure elucidation of plumerubradins A–C: Correlations between 1H NMR signal patterns and structural information of [2+2]-type cyclobutane derivatives. Chinese Chemical Letters, 2025, 36(5): 110149-. doi: 10.1016/j.cclet.2024.110149

    19. [19]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    20. [20]

      Huakang ZongXinyue LiYanlin ZhangFaxun WangXingxing YuGuotao DuanYuanyuan Luo . Pt/Ti3C2 electrode material used for H2S sensor with low detection limit and high stability. Chinese Chemical Letters, 2025, 36(5): 110195-. doi: 10.1016/j.cclet.2024.110195

Metrics
  • PDF Downloads(10)
  • Abstract views(1250)
  • HTML views(139)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return