Citation: Yong Xue-Feng, Huang Jian-Qiang, Ho Chun-Yu. Applications of (NHC)Ni(Ⅱ) Catalyzed [3+2] Hydroalkenylation-Rearrangement Cascades[J]. Chinese Journal of Organic Chemistry, ;2020, 40(10): 3327-3337. doi: 10.6023/cjoc202005050 shu

Applications of (NHC)Ni(Ⅱ) Catalyzed [3+2] Hydroalkenylation-Rearrangement Cascades

  • Corresponding author: Huang Jian-Qiang, huangjq3@sustech.edu.cn Ho Chun-Yu, jasonhcy@sustech.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 19 May 2020
    Revised Date: 2 July 2020
    Available Online: 15 July 2020

    Fund Project: the Guangdong Basic and Applied Basic Research Foundation-Youth Project 2019A1515110001Project supported by the Guangdong Basic and Applied Basic Research Foundation-Youth Project (No. 2019A1515110001)

Figures(12)

  • Synthetic applications of the recently developed (NHC)Ni(Ⅱ) catalyzed[3+2] hydroalkenylation-rearrangement cascade (HARC) were investigated. The foundations of these highly substituted cyclopentadienes and methylene cyclopentanes formation were compared with typical cross-hydroalkenylation of alkenes and dienes. The desired cyclization products were examined as key starting materials for a range of olefin functionalization methodology, including Diels-Alder, epoxidation, ozonolysis, halogenation-rearrangement and fluorohydroxylation. The results showed that several very interesting carbon skeletons can be obtained easily with high diastereoselectivity in one step or in cascade.
  • 加载中
    1. [1]

      (a) Romano, C.; Mazet, C. J. Am. Chem. Soc. 2018, 140, 4743.
      (b) Chen, J.; Guo, J.; Lu, Z. Chin. J. Chem. 2018, 36, 1075.

    2. [2]

      Wilke, G. Angew. Chem. Int. Ed. 1988, 27, 185.  doi: 10.1002/anie.198801851

    3. [3]

      Bogdanović, B.; Spliethoff, B.; Wilke, G. Angew. Chem. Int. Ed. 1980, 19, 622.  doi: 10.1002/anie.198006221

    4. [4]

      (a) Rieu, J.-P.; Boucherle, A.; Cousse, H.; Mouzin, G. Tetrahedron 1986, 42, 4095.
      (b) Sonawane, H. R.; Bellur, N. S.; Ahuja, J. R.; Kulkarni, D. G. Tetrahedron: Asymmetry 1992, 3, 163.

    5. [5]

      Ziegler, K.; Cellert, H. G.; Holzkamp, E.; Wilke, G. Brennst. Chem. 1954, 35, 321.

    6. [6]

      (a) Ziegler, K.; Holzkamp, E.; Breil, H.; Martin, H. Angew. Chem. Int. Ed. 1955, 67, 426.
      (b) Wilke, G. Angew. Chem. Int. Ed. 1957, 69, 397.
      (c) Wilke, G. Angew. Chem. Int. Ed. 1960, 72, 581.
      (d) Wilke, G.; Bogdanov. B. Angew. Chem. Int. Ed. 1961, 73, 756.
      (e) Wilke, G.; Kroner, M.; Bogdanov, B Angew. Chem. Int. Ed. 1961, 73, 755.
      (f) Wilke, G.; Herrmann, G. Angew. Chem. Int. Ed. 1966, 5, 581.
      (g) Bogdanov. B; Wilke, G. Brennst.-Chem. 1968, 49, 323.

    7. [7]

      RajanBabu, T. V. Chem. Rev. 2003, 103, 2845.  doi: 10.1021/cr020040g

    8. [8]

      Kawata, N.; Maruya, K.-i.; Mizoroki, T.; Ozaki, A. Bull. Chem. Soc. Jpn. 1971, 44, 3217.  doi: 10.1246/bcsj.44.3217

    9. [9]

      (a) Ceder, R.; Muller, G.; Ordinas, J. I. J. Mol. Catal. 1994, 92, 127.
      (b) Monteiro, A. L.; Seferin, M.; Dupont, J.; de Souza, R. F. Tetrahedron Lett. 1996, 37, 1157.
      (c) Wegner, A.; Leitner, W. Chem. Commun. 1999, 1583.
      (d) Nomura, N.; Jin, J.; Park, H.; RajanBabu, T. V. J. Am. Chem. Soc. 1998, 120, 459.

    10. [10]

      (a) Shi, W.-J.; Zhang, Q.; Xie, J.-H.; Zhu, S.-F.; Hou, G.-H.; Zhou, Q.-L. J. Am. Chem. Soc. 2006, 128, 2780.
      (b) Zhang, Q.; Zhu, S.-F.; Qiao, X.-C.; Wang, L.-X.; Zhou, Q.-L. Adv. Synth. Catal. 2008, 350, 1507.
      (c) Zhang, Q.; Zhu, S.-F.; Cai, Y.; Wang, L.-X.; Zhou, Q.-L. Sci. China Chem. 2010, 53, 1899.

    11. [11]

      Li, K.; Li, M.-L.; Zhang, Q.; Zhu, S.-F.; Zhou, Q.-L. J. Am. Chem. Soc. 2018, 140, 7458.  doi: 10.1021/jacs.8b04703

    12. [12]

      Clement, N. D.; Cavell, K. J. Angew. Chem. Int. Ed. 2004, 43, 3845.  doi: 10.1002/anie.200454166

    13. [13]

      Ho, C.-Y.; He, L. Angew. Chem. Int. Ed. 2010, 49, 9182.  doi: 10.1002/anie.201001849

    14. [14]

      Ho, C.-Y.; Chan, C.-W.; He, L. Angew. Chem. Int. Ed. 2015, 54, 4512.  doi: 10.1002/anie.201411882

    15. [15]

      Ho, C.-Y.; He, L. Chem. Commun. 2012, 48, 1481.  doi: 10.1039/C1CC14593B

    16. [16]

      (a) Lian, X.; Chen, W.; Dang, L.; Li, Y.; Ho, C.-Y. Angew. Chem. Int. Ed. 2017, 56, 9048.
      (b) Chen, Y.; Dang, L.; Ho, C.-Y. Nat. Commun. 2020, 11, 2269.

    17. [17]

      Chen, W.; Li, Y.; Chen, Y.; Ho, C.-Y. Angew. Chem. Int. Ed. 2018, 57, 2677.  doi: 10.1002/anie.201712693

    18. [18]

      Ho, C.-Y.; He, L. J. Org. Chem. 2014, 79, 11873.  doi: 10.1021/jo5008477

    19. [19]

      Huang, J.-Q.; Ho, C.-Y. Angew. Chem. Int. Ed. 2019, 58, 5702.  doi: 10.1002/anie.201901255

    20. [20]

      Huang, J.-Q.; Ho, C.-Y. Angew. Chem. Int. Ed. 2020, 59, 5288.  doi: 10.1002/anie.201914542

    21. [21]

      Kumareswaran, R.; Nandi, M.; RajanBabu, T. V. Org. Lett. 2003, 5, 4345.  doi: 10.1021/ol0356284

    22. [22]

      Wong, H. N. C.; Hon, M. Y.; Tse, C. W.; Yip, Y. C.; Tanko, J.; Hudlicky, T. Chem. Rev. 1989, 89, 165.  doi: 10.1021/cr00091a005

    23. [23]

      (a) Zhang, G.-P.; Huang, S.; Jiang, Y.-J.; Liu, X.-Y.; Ding, C.-H.; Wei, Y.; Hou, X.-L. Chem. Commun. 2019, 55, 6449.
      (b) Huang, J.-Q.; Liu, W.; Zheng, B.-H.; Liu, X. Y.; Yang, Z.; Ding, C.-H.; Li, H.; Peng, Q.; Hou, X.-L. ACS Catal. 2018, 8, 1964.
      (c) Huang, J.-Q.; Zhao, J.-F.; Yang, Z.; Ding, C.-H.; Hou, X.-L.; Peng, X.-S.; Wong, H. N. C. Asian J. Org. Chem. 2017, 6, 1769.
      (d) Huang, J.-Q.; Ding, C.-H.; Hou, X.-L. J. Org. Chem. 2014, 79, 12010.
      (e) Liu, W.; Chen, D.; Zhu, X.-Z.; Wan, X.-L.; Hou, X.-L. J. Am. Chem. Soc. 2009, 131, 8734.

    24. [24]

      (a) Fumagalli, G.; Stanton, S.; Bower, J. F. Chem. Rev. 2017, 117, 9404.
      (b) Simaan, M.; Marek, I. Angew. Chem. Int. Ed. 2018, 57, 1543.
      (c) Wang, X.-B.; Zheng, Z.-J.; Xie, J.-L.; Gu, X.-W.; Mu, Q.-C.; Yin, G.-W.; Ye, F.; Xu, Z.; Xu, L.-W. Angew. Chem. Int. Ed. 2020, 59, 790.
      (d) Shi, M.; Shao, L.-X.; Lu, J.-M.; Wei, Y.; Mizuno, K.; Maeda, H. Chem. Rev. 2010, 110, 5883.
      (e) Zhao, Z.-Y.; Nie, Y.-X.; Tang, R.-H.; Yin, G.-W.; Cao, J.; Xu, Z.; Cui, Y.-M.; Zheng, Z.-J.; Xu, L.-W. ACS catal. 2019, 9, 9110.

    25. [25]

    26. [26]

    27. [27]

    28. [28]

      (a) Funami, H.; Kusama, H.; Iwasawa, N. Angew. Chem. Int. Ed. 2007, 46, 909.
      (b) Lee, J. H.; Toste, F. D. Angew. Chem. Int. Ed. 2007, 46, 912.
      (c) Kramer, S.; Odabachian, Y.; Overgaard, J.; Rottländer, M.; Gagosz, F.; Skrydstrup, T. Angew. Chem. Int. Ed. 2011, 50, 5090.

    29. [29]

      (a) Li, H.; Zhang, W.-X.; Xi, Z. Chem. Eur. J. 2013, 19, 12859.
      (b) Xi, Z. F.; Li, P. X. Angew. Chem. Int. Ed. 2000, 39, 2950.
      (c) Xi, Z. F.; Song, Q. L.; Chen, J. L.; Guan, H. R.; Li, P. X. Angew. Chem. Int. Ed. 2001, 40, 1913.

    30. [30]

      Cheng, X.; Zhu, L.; Lin, M.; Chen, J.; Huang, X. Chem. Commun. 2017, 53, 3745.  doi: 10.1039/C7CC01368J

    31. [31]

      Díez-González, S.; Marion, N.; Nolan, S. P. Chem. Rev. 2009, 109, 3612.  doi: 10.1021/cr900074m

    32. [32]

      (a) Xu, M.; Wang, Y.; Yang, F.; Wu, C.; Wang, Z.; Ye, B.; Jiang, X.; Zhao, Q.; Li, J.; Liu, Y.; Zhang, J.; Tian, G.; He, Y.; Shen, J.; Jiang, H. Eur. J. Med. Chem. 2018, 145, 74.
      (b) Ravi Ganesh, K.; Pachore, S. S.; Pratap, T. V.; Umesh, K.; Basaveswara Rao, M. V.; Murthy, C.; Suresh Babu, M. Synth. Commun. 2015, 45, 2676.

    33. [33]

      (a) Shi, M.; Lu, J.-M.; Wei, Y.; Shao, L.-X. Acc. Chem. Res. 2012, 45, 641.
      (b) Zhang, D.-H.; Tang, X.-Y.; Shi, M. Acc. Chem. Res. 2014, 47, 913.

    34. [34]

      Yamago, S.; Nakamura, E. Org. React. (Hoboken, NJ, U. S.), 2002, 61, 15.

    35. [35]

      (a) Shen, X.-Y.; Peng, X.-S.; Wong, H. N. C. Org. Lett. 2016, 18, 1032.
      (b) Lu, X.-L.; Lyu, M.-Y.; Peng, X.-S.; Wong, H. N. C. Angew. Chem. Int. Ed. 2018, 57, 11365.

    36. [36]

      Gibson, S. E.; Mainolfi, N. Angew. Chem. Int. Ed. 2005, 44, 3022.  doi: 10.1002/anie.200462235

    37. [37]

      Rios-Gutierrez, M.; Domingo, L. R. Eur. J. Org. Chem. 2019, 2019, 267.  doi: 10.1002/ejoc.201800916

    38. [38]

      Zhou, Y.-Y.; Uyeda, C. Science 2019, 363, 857.  doi: 10.1126/science.aau0364

    39. [39]

      (a) Binger, P.; Wedemann, P.; Kozhushkov, S. I.; de Meijere, A. Eur. J. Org. Chem. 1998, 1998, 113.
      (b) Binger, P.; Brinkmann, A.; Wedemann, P. Chem. Ber. Recl. 1983, 116, 2920.
      (c) Binger, P.; McMeekin, J. Angew. Chem. Int. Ed. 1974, 13, 466.
      (d) Binger, P.; McMeekin, J. Angew. Chem. Int. Ed. 1973, 12, 995.
      (e) Ohta, T.; Takaya, H.; Trost, B. M.; Fleming, I.; Paquette, L. A. Metal-catalyzed Cycloaddition of Small Ring Compounds, Petgamon, Oxford, 1991, p. 1185.

    40. [40]

      Fu, N.-Y.; Chan, S.-H.; Wong, H. N. C. In The Chemistry of Cyclobutanes, 1 ed.; Eds.: Rappoport, Z., Liebman, J. F., John Wiley & Sons, Ltd., Chichester, 2005, p. 357.

    41. [41]

      (a) Hou, X. L.; Yang, Z.; Yeung, K. S.; Wong, H. N. C. In Progress in Heterocyclic Chemistry, Vol. 21, Eds.: Gribble, G. W.; Joule, J. A., Elsevier, Oxford, UK, 2009, p. 179.
      (b) Hou X. L.; Yang, Z.; Wong, H. N. C. In Progress in Heterocyclic Chemistry, Vol. 13, Eds.: Gribble, G. W.; Gilchrist, T. L., Elsevier, Oxford, UK, 2001, p. 130.
      (c) Hou, X. L.; Cheung, H. Y.; Hon, T. Y.; Kwan, P. L.; Lo, T. H.; Tong, S. Y.; Wong, H. N. C. Tetrahedron 1998, 54, 1955.

    42. [42]

      Chen, F.; Chen, K.; Zhang, Y.; He, Y.; Wang, Y.-M.; Zhu, S. J. Am. Chem. Soc. 2017, 139, 13929.  doi: 10.1021/jacs.7b08064

    43. [43]

      (a) Yamago, S.; Nakamura, E. J. Am. Chem. Soc. 1989, 111, 7285.
      (b) Lanke, V.; Zhang, F.-G.; Kaushansky, A.; Marek, I. Chem. Sci. 2019, 10, 9548.

    44. [44]

      O'Connor, A. R.; Urbin, S. A.; Moorhouse, R. A.; White, P. S.; Brookhart, M. Organometallics 2009, 28, 2372.  doi: 10.1021/om801103p

    45. [45]

      Minami, A.; Ozaki, T.; Liu, C.; Oikawa, H. Nat. Prod. Rep. 2018, 35, 1330.  doi: 10.1039/C8NP00026C

    46. [46]

      Yang, Y.-L.; Li, W.; Wang, H.; Yang, L.; Yuan, J.-Z.; Cai, C.-H.; Chen, H.-Q.; Dong, W.-H.; Ding, X.-P.; Jiang, B.; Mándi, A.; Kurtán, T.; Mei, W.-L.; Dai, H.-F. Fitoterapia 2019, 138.

    47. [47]

      Krawczyk, A. R.; Jones, J. B. J. Org. Chem. 1989, 54, 1795.  doi: 10.1021/jo00269a010

    48. [48]

      (a) Lin, F.; Peng, H.-Y.; Chen, J.-X.; Chik, D. T. W.; Cai, Z.; Wong, K. M. C.; Yam, V. W. W.; Wong, H. N. C. J. Am. Chem. Soc. 2010, 132, 16383.
      (b) Wu, A.-H.; Hau, C.-K.; Wong, H. N. C. Adv. Synth. Catal. 2007, 349, 601.
      (c) Peng, H.-Y.; Lam, C.-K.; Mak, T. C. W.; Cai, Z.; Ma, W.-T.; Li, Y.-X.; Wong, H. N. C. J. Am. Chem. Soc. 2005, 127, 9603.

    49. [49]

      Jackson, D. A.; Lacy, P. H.; Smith, D. C. C. J. Chem. Soc., Perkin Trans. 1 1989, 215.

    50. [50]

      Gonzalez, M. J.; Gonzalez, J.; Vicente, R. Eur. J. Org. Chem. 2012, 2012, 6140.  doi: 10.1002/ejoc.201201191

    51. [51]

      (a) Meinwald, J.; Labana, S. S.; Chadha, M. S. J. Am. Chem. Soc. 1963, 85, 582.
      (b) House, H. O. J. Am. Chem. Soc. 1955, 77, 3070.

    52. [52]

      Ma, D.; Miao, C.-B.; Sun, J. J. Am. Chem. Soc. 2019, 141, 13783.  doi: 10.1021/jacs.9b07514

    53. [53]

      Chang, M.-Y.; Lin, C.-H. J. Chin. Chem. Soc. (Taipei, Taiwan) 2011, 58, 853.  doi: 10.1002/jccs.201190135

    54. [54]

      Chang, M.-Y.; Lee, N.-C.; Lee, M.-F.; Huang, Y.-P.; Lin, C.-H. Tetrahedron Lett. 2010, 51, 5900.  doi: 10.1016/j.tetlet.2010.08.090

    55. [55]

      Duan, J. J. W.; Lu, Z.; Jiang, B.; Yang, B. V.; Doweyko, L. M.; Nirschl, D. S.; Haque, L. E.; Lin, S.; Brown, G.; Hynes, J.; Tokarski, J. S.; Sack, J. S.; Khan, J.; Lippy, J. S.; Zhang, R. F.; Pitt, S.; Shen, G.; Pitts, W. J.; Carter, P. H.; Barrish, J. C.; Nadler, S. G.; Salter-Cid, L. M.; McKinnon, M.; Fura, A.; Schieven, G. L.; Wrobleski, S. T. Biorg. Med. Chem. Lett. 2014, 24, 5721.  doi: 10.1016/j.bmcl.2014.10.061

    56. [56]

      Chang, M. Y.; Lee, N. C.; Lee, M. F.; Huang, Y. P.; Lin, C. H. Tetrahedron Lett. 2010, 51, 5900.  doi: 10.1016/j.tetlet.2010.08.090

  • 加载中
    1. [1]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    2. [2]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    3. [3]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    4. [4]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    5. [5]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    6. [6]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    7. [7]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    8. [8]

      Zhanhui Yang Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032

    9. [9]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    10. [10]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    11. [11]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    12. [12]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    13. [13]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    14. [14]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    15. [15]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    16. [16]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    17. [17]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    18. [18]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    19. [19]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    20. [20]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

Metrics
  • PDF Downloads(9)
  • Abstract views(1638)
  • HTML views(273)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return