Citation: Zhang Qi-Qi, Lin Peng-Peng, Yang Ling, Tan Dong-Hang, Feng Si-Xin, Wang Honggen, Li Qingjiang. Visible-Light-Promoted Ir(Ⅲ)-Catalyzed ZE Isomerization of Monofluorostilbenes[J]. Chinese Journal of Organic Chemistry, ;2020, 40(10): 3314-3326. doi: 10.6023/cjoc202005048 shu

Visible-Light-Promoted Ir(Ⅲ)-Catalyzed ZE Isomerization of Monofluorostilbenes

  • Corresponding author: Li Qingjiang, liqingj3@mail.sysu.edu.cn
  • Received Date: 19 May 2020
    Revised Date: 10 July 2020
    Available Online: 22 July 2020

    Fund Project: the Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery 2019B030301005the State Key Laboratory of Natural and Biomimetic Drugs, Peking University K20170210the Guangdong Basic and Applied Basic Research Foundation 2019A1515011322the National Natural Science Foundation of China 81930098Project supported by the Guangdong Basic and Applied Basic Research Foundation (No. 2019A1515011322), the Fundamental Research Funds for the Central Universities (No. 19ykpy124), the National Natural Science Foundation of China (No. 81930098), the Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery (No. 2019B030301005), and the State Key Laboratory of Natural and Biomimetic Drugs, Peking University (No. K20170210)the Fundamental Research Funds for the Central Universities 19ykpy124

Figures(3)

  • A photocatalytic Z to E isomerization of monofluorostilbenes in the presence of visible light (blue LEDs) has been developed. The transformation, which proceeds through a selective energy transfer pathway with Ir(Ⅲ) complex, offers facile access to thermodynamically less stable E-monofluoroalkenes with synthetically useful efficiency (up to 96% yield, up to 91:9 E:Z). Mild reaction conditions, good functional groups tolerance, and broad substrate scope were observed. Furthermore, the synthetic utility of this method is demonstrated by the rapid synthesis of monofluorinated cis-DMU-212 analogue E-30.
  • 加载中
    1. [1]

      (a) Mei, H.; Han, J.; Fustero, S.; Medio-Simon, M.; Sedgwick, D. M.; Santi, C.; Ruzziconi, R.; Soloshonok, V. A. Chem. Eur. J. 2019, 25, 11797.
      (b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
      (c) Kirsch, P. Modern Fluoroorganic Chemistry: Synthesis Reactivity, Applications, Wiley-VCH, Weinheim, 2004.

    2. [2]

      (a) Edmondson, S. D.; Wei, L.; Xu, J.; Shang, J.; Xu, S.; Pang, J.; Chaudhary, A.; Dean, D. C.; He, H.; Leiting, B.; Lyons, K. A.; Patel, R. A.; Patel, S. B.; Scapin, G.; Wu, J. K.; Beconi, M. G.; Thornberry, N. A.; Weber, A. E. Bioorg. Med. Chem. Lett. 2008, 18, 2409.
      (b) Van der Veken, P.; Senten, K.; Kertèsz, I.; De Meester, I.; Lambeir, A.-M.; Maes, M.-B.; Scharpé, S.; Haemers, A.; Augustyns, K. J. Med. Chem. 2005, 48, 1768.
      (c) Kanazawa, J.; Takahashi, T.; Akinaga, S.; Tamaoki, T.; Okabe, M. Anti-Cancer Drugs 1998, 9, 653.
      (d) Deng, T.; Shan, S.; Li, Z.-B.; Wu, Z.-W.; Liao, C.-Z.; Ko, B.; Lu, X.-P.; Cheng, J.; Ning, Z.-Q. Biol. Pharm. Bull. 2005, 28, 1192.

    3. [3]

      (a) Jakobsche, C. E.; Choudhary, A.; Miller, S. J.; Raines, R. T. J. Am. Chem. Soc. 2010, 132, 6651.
      (b) Couve-Bonnaire, S.; Cahard, D.; Pannecoucke, X. Org. Biomol. Chem. 2007, 5, 1151.
      (c) Asahina, Y.; Iwase, K.; Iinuma, F.; Hosaka, M.; Ishizaki, T. J. Med. Chem. 2005, 48, 3194.

    4. [4]

      (a) Fustero, S.; Simón-Fuentes, A.; Barrio, P.; Haufe, G. Chem. Rev. 2015, 115, 871.
      (b) Dolbier Jr., W. R. Acc. Chem. Res. 1991, 24, 63.

    5. [5]

      For reviews, see:
      (a) Drouin, M.; Hamel, J.-D.; Paquin, J.-F. Synthesis 2018, 50, 881.
      (b) Landelle, G.; Bergeron, M.; Turcotte-Savard, M.-O.; Paquin, J.-F. Chem. Soc. Rev. 2011, 40, 2867. For selected recent examples, see:
      (c) Li, C.; Cao, Y.-X.; Jin, R.-X.; Bian, K.-J.; Qin, Z.-Y.; Lan, Q.; Wang, X.-S. Chem. Sci. 2019, 10, 9285.
      (d) Kondoh, A.; Koda, K.; Terada, M. Org. Lett. 2019, 21, 2277.
      (e) Li, T.; Zhou, C.; Yan, X.; Wang, J. Angew. Chem., Int. Ed. 2018, 57, 4048.
      (f) Yu, L.; Tang, M.-L.; Si, C.-M.; Meng, Z.; Liang, Y.; Han, J.; Sun, X. Org. Lett. 2018, 20, 4579.
      (g) Lu, X.; Wang, Y.; Zhang, B.; Pi, J.-J.; Wang, X.-X.; Gong, T.-J.; Xiao, B.; Fu, Y. J. Am. Chem. Soc. 2017, 139, 12632.
      (h) Sakaguchi, H.; Uetake, Y.; Ohashi, M.; Niwa, T.; Ogoshi, S.; Hosoya, T. J. Am. Chem. Soc. 2017, 139, 12855.
      (i) Thornbury, R. T.; Toste, F. D. Angew. Chem., Int. Ed. 2016, 55, 11629.
      (j) Xie, J.; Yu, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem., Int. Ed. 2016, 55, 9416.
      (k) Dai, W.; Shi, H.; Zhao, X.; Cao, S. Org. Lett. 2016, 18, 4284.

    6. [6]

      (a) Mandal, D.; Gupta, R.; Young, R. D. J. Am. Chem. Soc. 2018, 140, 10682.
      (b) Zhou, Y.; Zhang, Y.; Wang, J. Org. Biomol. Chem. 2016, 14, 10444.
      (c) Zhao, Y.; Jiang, F.; Hu, J. J. Am. Chem. Soc. 2015, 137, 5199.
      (d) Ghosh, A. K. Zajc, B. Org. Lett. 2006, 8, 1553.

    7. [7]

      Chen, C.; Wilcoxen, K.; Huang, C. Q.; Strack, N.; McCarthy, J. R. J. Fluorine Chem. 2000, 101, 285.  doi: 10.1016/S0022-1139(99)00172-4

    8. [8]

      (a) O'Hagan, D.; Rzepa, H. S.; Schüler, M.; Slawin, A. M. Z. Beilstein J. Org. Chem. 2006, 2, DOI: 10.1186/1860-5397-2-19.
      (b)Baciocchi,E.;Ruzziconi,R.J.Org.Chem.1984,49,3395. 

    9. [9]

      (a) Petasis, N.; Yudin, A. K.; Zavialov, I. A.; Prakash, G. K. S.; Olah, G. A. Synlett 1997, 606.
      (b) Ranjbar-Karimi, R. Ultrason. Sonochem. 2010, 17, 768.

    10. [10]

      Cai, S.-H.; Ye, L.; Wang, D.-X.; Wang, Y.-Q.; Lai, L.-J.; Zhu, C.; Feng, C.; Loh, T.-P. Chem. Commun. 2017, 53, 8731.  doi: 10.1039/C7CC04131D

    11. [11]

      For selected examples, see:
      (a) Hammond, G. S.; Saltiel, J. J. Am. Chem. Soc. 1962, 84, 4983.
      (b) Saltiel, J.; Hammond, G. S. J. Am. Chem. Soc. 1963, 85, 2515.
      (c) Hammond, G. S.; Saltiel, J.; Lamola, A. A.; Turro, N. J.; Bradshaw, J. S.; Cowan, D. O.; Counsell, R. C.; Vogt, V.; Dalton, C. J. Am. Chem. Soc. 1964, 86, 3197.
      (d) Liu, R. S. H.; Turro Jr., N. J.; Hammond, G. S. J. Am. Chem. Soc. 1965, 87, 3406.
      (e) Herkstroeter, W. G.; Hammond, G. S. J. Am. Chem. Soc. 1966, 88, 4769.

    12. [12]

      (a) Arai, T.; Sakuragi, H.; Tokumaru, K. Chem. Lett. 1980, 9, 261.
      (b) Arai, T.; Sakuragi, H.; Tokumaru, K. Bull. Chem. Soc. Jpn. 1982, 55, 2204.

    13. [13]

      (a) Metternich, J. B.; Gilmour, R. J. Am. Chem. Soc. 2015, 137, 11254.
      (b) Metternich, J. B.; Gilmour, R. J. Am. Chem. Soc. 2016, 138, 1040.
      (c) Metternich, J. B.; Artiukhin, D. G.; Holland, M. C.; von Bremen-Kühne, M.; Neugebauer, J.; Gilmour, R. J. Org. Chem. 2017, 82, 9955.
      (d) Molloy, J. J.; Metternich, J. B.; Daniliuc, C. G.; Watson, A. J. B.; Gilmour, R. Angew. Chem., Int. Ed. 2018, 57, 3168.
      (e) Faßbender, S. I.; Metternich, J. B.; Gilmour, R. Org. Lett. 2018, 20, 724.
      (f) Faßbender, S. I.; Molloy, J. J.; Mück-Lichtenfeld, C.; Gilmour, R. Angew. Chem., Int. Ed. 2019, 58, 18619.

    14. [14]

      (a) Singh, K.; Staig, S. J.; Weaver, J. D. J. Am. Chem. Soc. 2014, 136, 5275.
      (b) Singh, A.; Fennell, C. J.; Weaver, J. D. Chem. Sci. 2016, 7, 6796.
      (c) Day, J. I.; Singh, K.; Trinh, W.; Weaver, J. D. J. Am. Chem. Soc. 2018, 140, 9934.

    15. [15]

      (a) Zhao, Y.-P.; Yang, L.-Y.; Liu, R. S. H. Green Chem. 2009, 11, 837.
      (b) Fabry, D. C.; Ronge, M. A.; Rueping, M. Chem. Eur. J. 2015, 21, 5350.
      (c) Rackl, D.; Kreitmeier, P.; Reiser, O. Green Chem. 2016, 18, 214.
      (d) Cai, W.; Fan, H.; Ding, D.; Zhang, Y.; Wang, W. Chem. Commun. 2017, 53, 12918.
      (e) Zhan, K.; Li, Y. Catalysis 2017, 7, 337.
      (f) Chen, X.; Qiu, S.; Wang, S.; Wang, H.; Zhai, H. Org. Biomol. Chem. 2017, 15, 6349.
      (g) Nakajima, K.; Guo, X.; Nishibayashi, Y. Chem. Asian J. 2018, 13, 3653.
      (h) Bhadra, M.; Kandambeth, S.; Sahoo, M. K.; Addicoat, M.; Balaraman, E.; Banerjee, R. J. Am. Chem. Soc. 2019, 141, 6152.

    16. [16]

      (a) Turro, N. J.; Ramamurthy, V.; Scaiano, J. C. Modern Molecula Photochemistry of Organic Molecules, University Science Books, Sausalito, CA, 2010.
      (b) Metternich, J. B.; Gilmour, R. Synlett 2016, 27, 2541.
      (c) Zhang, H.; Yu, S. Chin. J. Org. Chem. 2019, 39, 95(in Chinese).
      (张昊, 俞寿云, 有机化学, 2019, 39, 95.)

    17. [17]

      Caldwell, R. A.; Zhou, L. J. Am. Chem. Soc. 1994, 116, 2271.  doi: 10.1021/ja00085a005

    18. [18]

      (a) Zhang, Q.-Q.; Chen, S.-Y.; Lin, E.; Wang, H.; Li, Q. Org. Lett. 2019, 21, 3123.
      (b) Yang, L.; Ji, W.-W.; Lin, E.; Li, J.-L.; Fan, W.-X.; Li, Q.; Wang, H. Org. Lett. 2018, 20, 1924.
      (c) Tan, D.-H.; Lin, E.; Ji, W.-W.; Zeng, Y.-F.; Fan, W.-X.; Li, Q.; Gao, H.; Wang, H. Adv. Synth. Catal. 2018, 360, 1032.

    19. [19]

      For selected works on C-F functionalization of trifluoromethyl arenes, see:
      (a) Vogt, D. B.; Seath, C. P.; Wang, H.; Jui, N. T. J. Am. Chem. Soc. 2019, 141, 13203.
      (b) Dang, H.; Whittaker, A. M.; Lalic, G. Chem. Sci. 2016, 7, 505.
      (c) Saboureau, C.; Troupel, M.; Sibille, S.; Périchon, J. J. Chem. Soc., Chem. Commun. 1989, 1138.

    20. [20]

      (a) Tian, P.; Feng, C.; Loh, T.-P. Nat. Commun. 2015, 6, 7472.
      (b) Kong, L.; Zhou, X.; Li, X. Org. Lett. 2016, 18, 6320.
      (c) Zell, D.; Müller, V.; Dhawa, U.; Bursch, M.; Presa, R. R.; Grimme, S.; Ackermann, L. Chem. Eur. J. 2017, 23, 12145.

    21. [21]

      Lewis, F. D.; Howard, D. K.; Oxman, J. D.; Upthagrove, A. L.; Quillen, S. L. J. Am. Chem. Soc. 1986, 108, 5964.  doi: 10.1021/ja00279a049

    22. [22]

      (a) Gosslau, A.; Pabbaraja, S.; Knapp, S.; Chen, K. Y. Eur. J. Pharmacol. 2008, 587, 25.
      (b) Sale, S.; Verschoyle, R. D.; Boocock, D.; Jones, D. J. L.; Wilsher, N.; Ruparelia, K. C.; Potter, G. A.; Farmer, P. B.; Steward, W. P.; Gescher, A. J. Br. J. Cancer 2004, 90, 736.

    23. [23]

      Xiong, Y.; Huang, T.; Ji, X.; Wu, J.; Cao, S. Org. Biomol. Chem. 2015, 13, 7389.  doi: 10.1039/C5OB01016K

    24. [24]

      For very recent reviews on photocatalysis energy transfer processes, see:
      (a) Zhou, Q.-Q.; Zou, Y.-Q.; Lu, L.-Q.; Xiao, W.-J. Angew. Chem., Int. Ed. 2019, 58, 1586.
      (b) Strieth-Kalthoff, F.; James, M. J.; Teders, M.; Pitzer, L.; Glorius, F. Chem. Soc. Rev. 2018, 47, 7190.
      (c) Marzo, L.; Pagire, S. K.; Reiser, O.; König, B. Angew. Chem., Int. Ed. 2018, 57, 10034.

    25. [25]

      Xu, J.; Burton, D. J. J. Org. Chem. 2006, 71, 3743.  doi: 10.1021/jo060068i

  • 加载中
    1. [1]

      Kai YeZhicheng YeChuantao WangZhilai LuoCheng LianChunyan Bao . Artificial signal transduction triggered by molecular photoisomerization in lipid membranes. Chinese Chemical Letters, 2025, 36(4): 110033-. doi: 10.1016/j.cclet.2024.110033

    2. [2]

      Er-Meng WangZiyi WangXu BanXiaowei ZhaoYanli YinZhiyong Jiang . Chemoselective photocatalytic sulfenylamination of alkenes with sulfenamides via energy transfer. Chinese Chemical Letters, 2024, 35(12): 109843-. doi: 10.1016/j.cclet.2024.109843

    3. [3]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    4. [4]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    5. [5]

      Siwei WangWei-Lei ZhouYong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261

    6. [6]

      Huanyu LiuGang YuRuoyao GuoHao QiJiayin ZhengTong JinZifeng ZhaoZuqiang BianZhiwei Liu . Direct identification of energy transfer mechanism in Ce-Mn system by constructing molecular heteronuclear complexes. Chinese Chemical Letters, 2025, 36(2): 110296-. doi: 10.1016/j.cclet.2024.110296

    7. [7]

      Shuai QiuJia HeXiao HuHongxia YanZhao GaoWei Tian . Cation-π enhanced triplet-to-singlet Förster resonance energy transfer for fluorescence afterglow. Chinese Chemical Letters, 2025, 36(4): 110057-. doi: 10.1016/j.cclet.2024.110057

    8. [8]

      Yusong BiRongzhen ZhangKaikai NiuShengsheng YuHui LiuLingbao Xing . Construction of a three-step sequential energy transfer system with selective enhancement of superoxide anion radicals for photocatalysis. Chinese Chemical Letters, 2025, 36(5): 110311-. doi: 10.1016/j.cclet.2024.110311

    9. [9]

      Xiaoyao MaJinling ZhangGe FangHe GaoJie GaoLi FuYuanyuan HouGang Bai . Förster resonance energy transfer reveals phillygenin and swertiamarin concurrently target AKT on different binding domains to increase the anti-inflammatory effect. Chinese Chemical Letters, 2024, 35(5): 108823-. doi: 10.1016/j.cclet.2023.108823

    10. [10]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    11. [11]

      Zhaorui SongQiulian HaoBing LiYuwei YuanShanshan ZhangYongkuan SuoHai-Hao HanZhen Cheng . NIR-Ⅱ fluorescence lateral flow immunosensor based on efficient energy transfer probe for point-of-care testing of tumor biomarkers. Chinese Chemical Letters, 2025, 36(1): 109834-. doi: 10.1016/j.cclet.2024.109834

    12. [12]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    13. [13]

      Guilong LiWenbo MaJialing ZhouCaiqin WuChenling YaoHuan ZengJian Wang . A composite hydrogel with porous and homogeneous structure for efficient osmotic energy conversion. Chinese Chemical Letters, 2025, 36(2): 110449-. doi: 10.1016/j.cclet.2024.110449

    14. [14]

      Li LiXue KeShan WangZhuo JiangYuzheng GuoChunguang Kuai . Antioxidative strategies of 2D MXenes in aqueous energy storage system. Chinese Chemical Letters, 2025, 36(5): 110423-. doi: 10.1016/j.cclet.2024.110423

    15. [15]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    16. [16]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    17. [17]

      Minghao HuTianci XieYuqiang HuLongjie LiTing WangTongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232

    18. [18]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    19. [19]

      Feibin WeiYongfang RaoYu HuangWei WangHui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931

    20. [20]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

Metrics
  • PDF Downloads(12)
  • Abstract views(1125)
  • HTML views(215)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return