Citation: Tan Dan, Wu Sai, Wei Huan, Hu Yuanyuan, Chen Huajie. Design, Synthesis, and Properties of Conjuated Molecules with Isatin-Fused Acenaphthenequinone Imide Moieties[J]. Chinese Journal of Organic Chemistry, ;2020, 40(9): 2919-2928. doi: 10.6023/cjoc202005035 shu

Design, Synthesis, and Properties of Conjuated Molecules with Isatin-Fused Acenaphthenequinone Imide Moieties

  • Corresponding author: Chen Huajie, chenhjoe@163.com; chenhjoe@xtu.edu.cn
  • Received Date: 14 May 2020
    Revised Date: 12 June 2020
    Available Online: 24 June 2020

    Fund Project: the Science and Technology Planning Project of Hunan Province 2017RS3048Project supported by the National Natural Science Foundation of China (No. 21875202), the Hunan Provincial Natural Science Foundation of China (No. 2018JJ1024), and the Science and Technology Planning Project of Hunan Province (No. 2017RS3048)the National Natural Science Foundation of China 21875202the Hunan Provincial Natural Science Foundation of China 2018JJ1024

Figures(7)

  • Two highly electron-deficient, novel isoindigo (IID) derivative acceptor units, including isatin-fused acenaphthenequinone imide (A1) and nitrogen-doped isatin-fused acenaphthenequinone imide (A2), were designed and synthesized via Knoevenagel consendation reaction. In comparison with the well-known IID unit, both A1 and A2 acceptor units exhibit reduced LUMO energy levels (ca. -4.0 eV) and extended π-conjugation backbone owing to the incorporation of strongly electron-withdrawing acenaphthenequinone imide. The properties observed here for both A1 and A2 are thus indicative of promising potential in the development of n-type organic semiconductors. On the basis of both A1 and A2 acceptor units, two A-A type organic π-conjugated molecules (BA1 and BA2) were further designed and synthesized by self-coupling of two identical A1 or A2 acceptor units. The effect of pyridal nitrogen on the backbone structure, optical absorption, energy level, and carrier mobility of the as-prepared π-conjugated molecules is studied systematically. The comparative investigation reveals that self-coupling of dual acceptor units into BA1 and BA2 not only endows them with extended conjugation backbone and enhanced molecular symmetry, but also improves their light-capturing abilities in the whole ultraviolet-visible region as relative to their parent acceptor units (A1 and A2). Moreover, the pyridal N-containing BA1 and BA2 possess enhanced backbone coplanarity and electron affinity as compared to their parent units (A1 and A2), thereby leading to reduced HOMO and LUMO energy levels. Finally, n-type thin-film transistors are further fabricated by adopting both BA1 and BA2 as the active layers, affording the electron motilities of 1.64×10-3 and 2.52×10-3 cm2·V-1·s-1, respectively.
  • 加载中
    1. [1]

      Bharitkar, Y. P.; Datta, S.; Sett, S.; Marathee, N.; Khan, P.; Mondal, N. B. Chem. Biol. Interact. 2017, 7, 19.

    2. [2]

      Mei, J.; Graham, K. R.; Stalder, R.; Reynolds, J. R. Org. Lett. 2010, 12, 660.  doi: 10.1021/ol902512x

    3. [3]

      Papageorgiou, C.; Borer, X. Helv. Chim. Acta 1988, 71, 1079.  doi: 10.1002/hlca.19880710521

    4. [4]

      Ding, L.; Wang, Z. Y.; Wang, J. Y.; Pei, J. Chin. J. Chem. 2020, 38, 13.  doi: 10.1002/cjoc.201900347

    5. [5]

      Lu, Y.; Ding, Y. F.; Wang, J. Y.; Pei, J. Chin. J. Org. Chem. 2016, 36, 2272(in Chinese).
       

    6. [6]

    7. [7]

      Estrada, L. A.; Liu, D. Y.; Salazar, D. H.; Dyer, A. L.; Reynolds, J. R. Macromolecules 2012, 45, 8211.  doi: 10.1021/ma3016129

    8. [8]

      Bogdanov, A.; Mironov, V.; Musin, L.; Musin, R. Synthesis 2010, 3268.

    9. [9]

      El-Kateb, A.; Hennawy, I.; Shabana, R.; Osman, F. Phosphorus. Sulfur Relat. Elem. 1984, 20, 329.  doi: 10.1080/03086648408077642

    10. [10]

      Zhang, G. B.; Fu, Y. Y.; Xie, Z. Y.; Zhang, Q. Macromolecules 2011, 44, 1414.  doi: 10.1021/ma102357b

    11. [11]

      Cao, Y. Y.; Dou, J. H.; Zhao, N. J.; Zhang, S. M.; Zheng, Y. Q.; Zhang, J. P.; Wang, J. Y.; Pei, J.; Wang, Y. P. Chem. Mater. 2017, 29, 718.  doi: 10.1021/acs.chemmater.6b04405

    12. [12]

      Ashraf, R. S.; Kronemeijer, A. J.; James, D. I.; Sirringhaus, H.; McCulloch, I. Chem. Commun. 2012, 48, 3939.  doi: 10.1039/c2cc30169e

    13. [13]

      Li, C. C.; Un, H. I.; Pei, J. W.; Cai, M.; Wang, X.; Wang, J. Y.; Lan, Z. G.; Pei, J.; Wan, X. B. Chem. Eur. J. 2018, 24, 9807.  doi: 10.1002/chem.201801432

    14. [14]

      Huang, J. Y.; Mao, Z. P.; Chen, Z. H.; Gao, D.; Wei, C. Y.; Zhang, W. F.; Yu, G. Chem. Mater. 2016, 28, 2209.  doi: 10.1021/acs.chemmater.6b00154

    15. [15]

      Gao, Y.; Deng, Y. F.; Tian, H. K.; Zhang, J. D.; Yan, D. H.; Geng, Y. H.; Wang, F. S. Adv. Mater. 2017, 29, 1606217.  doi: 10.1002/adma.201606217

    16. [16]

      Yang, J.; Zhao, Z. Y.; Geng, H.; Cheng, C. L.; Chen, J. Y.; Sun, Y. L.; Shi, L. X.; Yi, Y. P.; Shuai, Z. G.; Guo, Y. L.; Wang, S.; Liu, Y. Q. Adv. Mater. 2017, 29, 1702115.  doi: 10.1002/adma.201702115

    17. [17]

      Lei, T.; Dou, J. H.; Ma, Z. J.; Liu, C. J.; Wang, J. Y.; Pei, J. Chem. Sci. 2013, 4, 2447.  doi: 10.1039/c3sc50245g

    18. [18]

      Hasegawa, T.; Ashizawa, M.; Matsumoto, H. RSC Adv. 2015, 5, 61035.  doi: 10.1039/C5RA07660A

    19. [19]

      Xu, S. L.; Ai, N.; Zhao, N.; Lan, Z. G.; Wang, X.; Pei, J.; Wan, X. B. RSC Adv. 2015, 5, 8340.  doi: 10.1039/C4RA14072A

    20. [20]

      Wan, Y.; Ashraf, R. S.; Nielsen, C. B.; Collado-Fregoso, E.; Niazi, M. R.; Yousaf, S. A.; Kirkus, M.; Chen, H. Y.; Amassian, A.; Durrant, J. R.; McCullon, I. Adv. Mater. 2015, 27, 4702.  doi: 10.1002/adma.201501841

    21. [21]

      Jiang, Y.; Zheng, X. H.; Deng, Y. F.; Tian, H. K.; Ding, J. Q.; Xie, Z. G.; Geng, Y. H.; Wang, F. S. Angew. Chem., Int. Ed. 2018, 57, 10283.  doi: 10.1002/anie.201800512

    22. [22]

      Lei, T.; Dou, J. H.; Cao, X. Y.; Wang, J. Y.; Pei, J. J. Am. Chem. Soc. 2013, 135, 12168.  doi: 10.1021/ja403624a

    23. [23]

      Ma, S. X.; Zhang, G. B.; Wang, F. F.; Dai, Y. R.; Lu, H. B.; Qiu, L. Z.; Ding, Y. S.; Cho, K. Macromolecules 2018, 51, 5704.  doi: 10.1021/acs.macromol.8b00839

    24. [24]

      He, Y.; Quinn, J.; Deng, Y.; Li, Y. Org. Electron. 2016, 35, 41.  doi: 10.1016/j.orgel.2016.05.003

    25. [25]

      Jiang, Y.; Gao, Y.; Tian, H. K.; Ding, J. Q.; Yan, D. H; Geng, Y. H.; Wang, F. S. Macromolecules 2016, 49, 2135.  doi: 10.1021/acs.macromol.6b00004

    26. [26]

      Mei, J. G.; Kim, D. H.; Ayzner, A. L.; Toney, M. F.; Bao, Z. N. J. Am. Chem. Soc. 2011, 133, 20130.  doi: 10.1021/ja209328m

    27. [27]

      Lei, T.; Dou, J. H.; Pei, J. Adv. Mater. 2012, 24, 6457.  doi: 10.1002/adma.201202689

    28. [28]

      Mei, J. G.; Wu, H. C.; Diao, Y.; Appleton, A.; Wang, H.; Zhou, Y.; Lee, W. Y.; Kurosawa, T.; Chen, W. C.; Bao, Z. N. Adv. Funct. Mater. 2015, 25, 3455.  doi: 10.1002/adfm.201500684

    29. [29]

      Lei, T.; Wang, J. Y.; Pei, J. Acc. Chem. Res. 2014, 47, 1117.  doi: 10.1021/ar400254j

    30. [30]

      Lan, L. Y.; Chen, Z. M.; Ying, L.; Huang, F.; Cao, Y. Org. Electron. 2016, 30, 176.  doi: 10.1016/j.orgel.2015.12.022

    31. [31]

      Li, X. L.; Guo, J.; Yang, L. F.; Chao, M. H.; Zheng, L. P; Ma, Z. Y.; Hu, Y. Y.; Zhao, Y.; Chen, H. J.; Liu, Y. Q. Front. Chem. 2019, 7, 362.  doi: 10.3389/fchem.2019.00362

    32. [32]

      Li, H. Y.; Kim, F. S.; Ren, G. Q.; Hollenbeck, E. C.; Subramaniyan, S.; Jenekhe, S. A. Angew. Chem., Int. Ed. 2013, 52, 5513.  doi: 10.1002/anie.201210085

    33. [33]

      Li, H. Y.; Kim, S.; Ren, G. Q.; Jenekhe, S. A. J. Am. Chem. Soc. 2013, 135, 14920.  doi: 10.1021/ja407471b

    34. [34]

      Li, H. Y.; Earmme, T.; Ren, G. Q.; Saeki, A.; Yoshikawa, S.; Murari, N. M.; Subramaniyan, S.; Crane, M. J.; Seki, S.; Jenekhe, S. A. J. Am. Chem. Soc. 2014, 136, 14589.  doi: 10.1021/ja508472j

    35. [35]

      Hwang, Y. J.; Li, H. Y.; Courtright, B. A. E.; Subramaniyan, S.; Jenekhe, S. A. Adv. Mater. 2016, 28, 124.  doi: 10.1002/adma.201503801

    36. [36]

      Kolhe, N. B.; West, S. M.; Tran, D. K.; Ding, X. M.; Kuzuhara, D.; Yoshimot, N.; Koganezawa, T.; Jenekhe, S. A. Chem. Mater. 2020, 32, 195.  doi: 10.1021/acs.chemmater.9b03329

    37. [37]

      Qian, X.; Zhu, Y. Z.; Song, J.; Gao, X. P.; Zheng, J. Y. Org. Lett. 2013, 15, 6034.  doi: 10.1021/ol402931u

    38. [38]

      Zhao, D.; Hu, J. Y.; Liu, Z. J.; Xiao, B.; Wang, X. Z.; Zhou, E. J.; Zhang, Q. Dyes Pigm. 2018, 151, 102.  doi: 10.1016/j.dyepig.2017.12.054

    39. [39]

      Jiro, T.; Tong, Z. W.; Yasuji, I. ARKIVOC 2001, 67.

    40. [40]

      Echegaray, P. D.; Mancheño, M. J.; Arrechea-Marcos, I.; Juárez, R.; López-Espejo, G.; Navarrete, J. T. L.; Ramos, M. M.; Seoane, C.; Ortiz, R. P.; Segura, J. L. J. Org. Chem. 2016, 81, 11256.  doi: 10.1021/acs.joc.6b02214

    41. [41]

      Ding, L.; Yang, C. Y.; Su, Z. M.; Pei, J. Sci. China Chem. 2015, 58, 364.  doi: 10.1007/s11426-014-5282-9

    42. [42]

      Chen, H. J.; Cai, G. S.; Guo, A. K.; Zhao, Z. Y.; Kuang, J. H.; Zheng, L. P.; Zhao, L. L.; Chen, J. Y.; Guo, Y. L.; Liu, Y. Q. Macromolecules 2019, 52, 6149.  doi: 10.1021/acs.macromol.9b00834

    43. [43]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H. Vreven, T.; Montgomery, J. A.; Jr., Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A.02, Gaussian, Inc, Wallingford CT, 2009.

    44. [44]

      Cao, Q. F.; Xiong, W. T.; Chen, H. J.; Cai, G. S.; Wang, G.; Zheng, L. P.; Sun, Y. M. J. Mater. Chem. A 2017, 5, 7451.  doi: 10.1039/C7TA01143A

  • 加载中
    1. [1]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    2. [2]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    3. [3]

      Huijuan Liao Yulin Xiao Dong Xue Mingyu Yang Jianyang Dong . Synthesis of 1-Benzyl Isoquinoline via the Minisci Reaction. University Chemistry, 2025, 40(7): 294-299. doi: 10.12461/PKU.DXHX202409092

    4. [4]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    5. [5]

      Xian BISisi WANGJinyue ZHANGYujia PENGZhen SHENHua LU . Discovery, development, and perspectives of circularly polarized luminescent materials based on β-isoindigo skeletons. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1049-1057. doi: 10.11862/CJIC.20240456

    6. [6]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    7. [7]

      Kexin Feng Jie Zhang Yujia Sun Qiong Ai Longchun Li . 乙酰二茂铁和二茂铁甲酰丙酮的合成、纯化及表征. University Chemistry, 2025, 40(8): 307-314. doi: 10.12461/PKU.DXHX202409045

    8. [8]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    9. [9]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    10. [10]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    11. [11]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    12. [12]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    13. [13]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    14. [14]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    15. [15]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    16. [16]

      Xinghai LiZhisen WuLijing ZhangShengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 2309041-0. doi: 10.3866/PKU.WHXB202309041

    17. [17]

      Jiaxin SuJiaqi ZhangShuming ChaiYankun WangSibo WangYuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-0. doi: 10.3866/PKU.WHXB202408012

    18. [18]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    19. [19]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    20. [20]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

Metrics
  • PDF Downloads(12)
  • Abstract views(1603)
  • HTML views(315)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return