Citation: Sun Zezhong, Xu Miao, Wang Yunxia, Hu Xiangdong. Synthetic Progress of Alkaloids against Mycobacterium Tuberculosis: Pseudopteroxazole and Ileabethoxazole[J]. Chinese Journal of Organic Chemistry, ;2020, 40(12): 4203-4215. doi: 10.6023/cjoc202005034 shu

Synthetic Progress of Alkaloids against Mycobacterium Tuberculosis: Pseudopteroxazole and Ileabethoxazole

  • Corresponding author: Wang Yunxia, wyx27210@nwu.edu.cn Hu Xiangdong, xiangdonghu@nwu.edu.cn
  • Received Date: 14 May 2020
    Revised Date: 11 June 2020
    Available Online: 24 June 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21772153), the Science and Technology Department of Shaanxi Province (No. S2019-JC-YB-0846) and the Key Science and Technology Innovation Team of Shaanxi Province (No. 2017KCT-37)the National Natural Science Foundation of China 21772153the Science and Technology Department of Shaanxi Province S2019-JC-YB-0846the Key Science and Technology Innovation Team of Shaanxi Province 2017KCT-37

Figures(11)

  • Two alkaloids of pseudopteroxazole and ileabethoxazole, isolated from sea whip Pseudopterogorgia elisabethae, have significant antimicrobial activity against pathogen of tuberculosis:Mycobacterium tuberculosis. These two alkaloids possess similar tetracyclic skeleton, which containing four stereocenters, a fully substituted aromatic ring and an uncommon benzoxazole unit in natural products. Significant antimicrobial activity and special molecular structures attracted extensive attentions to synthetic study on pseudopteroxazole and ileabethoxazole. The progress in the total synthesis of these two alkaloids is reviewed.
  • 加载中
    1. [1]

      (a) Paulson, T. Nature 2013, 502, S2.
      (b) Gong, H.; Li, J.; Xu, A.; Tang, Y.; Ji, W.; Gao, R.; Wang, S.; Yu, L.; Tian, C.; Li, J.; Yen, H.-Y.; Lam, S. M.; Shui, G.; Yang, X.; Sun, Y.; Li, X.; Jia, M.; Yang, C.; Jiang, B.; Lou, Z.; Robinson, C. V.; Wong, L.-L.; Guddat, L. W.; Sun, F.; Wang, Q.; Rao, Z. Science 2018, 362, eaat8923.

    2. [2]

      (a) Gerard, J.; Lloyd, R.; Barsby, T.; Haden, P.; Kelly, M. T.; Andersen, R. J. J. Nat. Prod. 1997, 60, 223.
      (b) El Sayed, K. A.; Bartyzel, P.; Shen, X.-Y.; Perry, T. L.; Zjawiony, J. K.; Hamann, M. T. Tetrahedron 2000, 56, 949.
      (c) Rodríguez, I. I.; Rodríguez, A. D. J. Nat. Prod. 2003, 66, 855.
      (d) De Oliveira, J. H.; Grube, A.; Köck, M.; Berlinck, R. G.; Macedo, M. L.; Ferreira, A. G.; Hajdu, E. J. Nat. Prod. 2004, 67, 1685.
      (e) Ma, C.-Y.; Case, R. J.; Wang, Y.-H.; Zhang, H.-J.; Tan, G. T.; Hung, N. V.; Cuong, N. M.; Franzblau, S. G.; Soejarto, D. D.; Fong, H. H. S.; Pauli, G. F. Planta Med. 2005, 71, 261.
      (f) Winkler, J. D.; Londregan, A. T.; Hamann, M. T. Org. Lett. 2006, 8, 2591.
      (g) Steinmetz, H.; Irschik, H.; Kunze, B.; Reichenbach, H.; Hoefle, G.; Jansen, R. Chem.-Eur. J. 2007, 13, 5822.
      (h) Thongthoom, T.; Songsiang, U.; Phaosiri, C.; Yenjai, C. Arch. Pharm. Res. 2010, 33, 675.
      (i) Auranwiwat, C.; Laphookhieo, S.; Trisuwan, K.; Pyne, S. G.; Ritthiwigrom, T. Phytochem. Lett. 2014, 9, 113.

    3. [3]

      Rodríguez, A. D.; Ramirez, C.; Rodríguez, I. I.; Gonzalez, E. Org. Lett. 1999, 1, 527.  doi: 10.1021/ol9907116

    4. [4]

      Rodríguez, I. I.; Rodríguez, A. D.; Wang, Y.; Franzblau, S. G. Tetrahedron Lett. 2006, 47, 3229.  doi: 10.1016/j.tetlet.2006.03.048

    5. [5]

      Johnson, T. W.; Corey, E. J. J. Am. Chem. Soc. 2001, 123, 4475.  doi: 10.1021/ja010221k

    6. [6]

      Fernando, C. R.; Calder, I. C.; Ham, K. N. J. Med. Chem. 1980, 23, 1153.  doi: 10.1021/jm00185a001

    7. [7]

      (a) Vedejs, E.; Fang, H. W. J. Org. Chem. 1984, 49, 210.
      (b) Cristau, H.-J.; Ribeill, Y. Synthesis 1988, 911.

    8. [8]

      (a) Corey, E. J.; Lazerwith, S. E. J. Am. Chem. Soc. 1998, 120, 12777.
      (b) Lazerwith, S. E.; Johnson, T. W.; Corey, E. J. Org. Lett. 2000, 2, 2389.
      (c) Hu, Y.-L.; Wang, Z.; Yang, H.; Chen, J.; Wu, Z.-B.; Lei, Y.; Zhou, L. Chem. Sci. 2019, 10, 6777.

    9. [9]

      Wiedenau, P.; Monse, B.; Blechert, S. Tetrahedron 1995, 51, 1167.  doi: 10.1016/0040-4020(94)01002-H

    10. [10]

      Evans, D.; Smith, C. E.; Williamson, W. R. N. J. Med. Chem. 1977, 20, 169.  doi: 10.1021/jm00211a039

    11. [11]

      (a) Nakahara, Y.; Fujita, A.; Beppu, K.; Ogawa, T. Tetrahedron 1986, 42, 6465.
      (b) Katritzky, A. R.; Musgrave, R. P.; Rachwal, B.; Zaklika, C. Heterocycles 1995, 41, 345.

    12. [12]

      Davidson, J. P.; Corey, E. J. J. Am. Chem. Soc. 2003, 125, 13486.  doi: 10.1021/ja0378916

    13. [13]

      Griffith, W. P.; Ley, S. V.; Whitcombe, G. P.; White, A. D. J. Chem. Soc., Chem. Commun. 1987, 1625.

    14. [14]

      Vedejs, E.; Fang, H. W. J. Org. Chem. 1984, 49, 210.  doi: 10.1021/jo00175a057

    15. [15]

      Corey, E. J.; Sauers, C. K. J. Am. Chem. Soc. 1957, 79, 248.

    16. [16]

      (a) Harmata, M.; Hong, X.; Barnes, C. L. Org. Lett. 2004, 6, 2201.
      (b) Harmata, M.; Hong, X. Org. Lett. 2005, 7, 3581.

    17. [17]

      (a) Bolm, C.; Hildebrand, J. P. Tetrahedron Lett. 1998, 39, 5731.
      (b) Harmata, M.; Pavri, N. Angew. Chem., Int. Ed. 1999, 38, 2419.

    18. [18]

      Harmata, M.; Kahraman, M. Synthesis 1994, 142.

    19. [19]

      Cary, J. M.; Moore, J. S. Org. Lett. 2002, 4, 4663.  doi: 10.1021/ol0270982

    20. [20]

      Moore, J. S.; Weinstein, E. J.; Wu, Z. Tetrahedron Lett. 1991, 32, 2465.  doi: 10.1016/S0040-4039(00)74354-1

    21. [21]

      Shi, L.; Narula, C. K.; Mak, K. T.; Kao, L.; Xu, Y.; Heck, R. F. J. Org. Chem. 1983, 48, 3894.  doi: 10.1021/jo00170a005

    22. [22]

      Cesati, R. R.; De Armas, J.; Hoveyda, A. H. J. Am. Chem. Soc. 2004, 126, 96.  doi: 10.1021/ja0305407

    23. [23]

      (a) Smidt, S. P.; Menges, F.; Pfaltz, A. Org. Lett. 2004, 6, 2023.
      (b) Smidt, S. P.; Menges, F.; Pfaltz, A. Org. Lett. 2004, 6, 3653.

    24. [24]

      Smith, A. B.; Schow, S. R.; Bloom, J. D.; Thompson, A. S.; Winzenberg, K. N. J. Am. Chem. Soc. 1982, 104, 4015.  doi: 10.1021/ja00378a045

    25. [25]

      Williams, D. R.; Shah, A. A. J. Am. Chem. Soc. 2014, 136, 8829.  doi: 10.1021/ja5043462

    26. [26]

      (a) Williams, D. R.; Fu, L. Synlett 2010, 591.
      (b) Williams, D. R.; Fu, L. Synlett 2010, 1641.
      (c) Counceller, C. M.; Eichman, C. C.; Proust, N.; Stambuli, J. P. Adv. Synth. Catal. 2011, 353, 79.
      (d) Williams, D. R.; Shah, A. A. Chem. Commun. 2010, 46, 4297.

    27. [27]

      Ohira, S. Synth. Commun. 1989, 19, 561.  doi: 10.1080/00397918908050700

    28. [28]

      (a) Shibata, T.; Koga, Y.; Narasaka, K. Bull. Chem. Soc. Jpn. 1995, 68, 911.
      (b) Pearson, A. J.; Dubbert, R. A. Organometallics 1994, 13, 1656.
      (c) Williams, D. R.; Shah, A. A.; Mazumder, S.; Baik, M.-H. Chem. Sci. 2013, 4, 238.

    29. [29]

      DeSolms, S. J. J. Org. Chem. 1976, 41, 2650.  doi: 10.1021/jo00877a034

    30. [30]

      Baker, B. A.; Boskovic, Z. V.; Lipshutz, B. H. Org. Lett. 2008, 10, 289.  doi: 10.1021/ol702689v

    31. [31]

      Anderson, A. M.; Blazek, J. M.; Garg, P.; Payne, B. J.; Mohan, R. S. Tetrahedron Lett. 2000, 41, 1527.  doi: 10.1016/S0040-4039(99)02330-8

    32. [32]

      Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.; Masamune, S.; Roush, W. R.; Sakai, T. Tetrahedron Lett. 1984, 25, 2183.  doi: 10.1016/S0040-4039(01)80205-7

    33. [33]

      Yang, M.; Yang, X.; Sun, H.; Li, A. Angew. Chem., Int. Ed. 2016, 55, 2851.  doi: 10.1002/anie.201510568

    34. [34]

      (a) Burns, B.; Grigg, R.; Ratananukul, P.; Sridharan, V.; Stevenson, P.; Sukirthalingam, S.; Worakun, T. Tetrahedron Lett. 1988, 29, 5565.
      (b) Negishi, E.; Noda, Y.; Lamaty, F.; Vawter, E. J. Tetrahedron Lett. 1990, 31, 4393.
      (c) Suffert, J.; Salem, B.; Klotz, P. J. Am. Chem. Soc. 2001, 123, 12107.
      (d) Salem, B.; Klotz, P.; Suffert, J. Org. Lett. 2003, 5, 845.
      (e) Salem, B.; Delort, E.; Klotz, P.; Suffert, J. Org. Lett. 2003, 5, 2307.
      (f) Hulot, C.; Amiri, S.; Blond, G.; Schreiner, P. R.; Suffert, J. J. Am. Chem. Soc. 2009, 131, 13387.
      (g) Kan, S. B. J.; Anderson, E. A. Org. Lett. 2008, 10, 2323.
      (h) Cordonnier, M.-C. A.; Kan, S. B. J.; Anderson, E. A. Chem. Commun. 2008, 44, 5818.
      (i) Cordonnier, M.-C. A.; Kan, S. B. J.; Gockel, B.; Goh, S. S.; Anderson, E. A. Org. Chem. Front. 2014, 1, 661.

    35. [35]

      (a) Lu, Z.; Li, Y.; Deng, J.; Li, A. Nat. Chem. 2013, 5, 679.
      (b) Li, J.; Yang, P.; Yao, M.; Deng, J.; Li, A. J. Am. Chem. Soc. 2014, 136, 16477.
      (c) Bian, M.; Wang, Z.; Xiong, X.; Sun, Y.; Matera, C.; Nicolaou, K. C.; Li, A. J. Am. Chem. Soc. 2012, 134, 8078.
      (d) Meng, Z.; Yu, H.; Li, L.; Tao, W.; Chen, H.; Wan, M.; Yang, P.; Edmonds, D. J.; Zhong, J.; Li, A. Nat. Commun. 2015, 6, 6096.
      (e) Yang, M.; Li, J.; Li, A. Nat. Commun. 2015, 6, 6445.
      (f) Wan, M.; Yao, M.; Gong, J.; Yang, P.; Liu, H.; Li, A. Chin. Chem. Lett. 2015, 26, 272.
      (g) Lu, Z.; Li, H.; Bian, M.; Li, A. J. Am. Chem. Soc. 2015, 137, 13764.

    36. [36]

      Yadav, J. S.; Bhasker, E. V.; Geetha, V.; Srihari, P. Tetrahedron 2010, 66, 1997.  doi: 10.1016/j.tet.2010.01.054

    37. [37]

      Buynak, J. D.; Strickland, J. B.; Lamb, G. W.; Khasnis, D.; Modi, S.; Williams, D.; Zhang, H. J. Org. Chem. 1991, 56, 7076.  doi: 10.1021/jo00025a024

    38. [38]

      (a) Conrad, J. C.; Kong, J.; Laforteza, B. N.; MacMillan, D. W. C. J. Am. Chem. Soc. 2009, 131, 11640.
      (b) Nicolaou, K. C.; Reingruber, R.; Sarlah, D.; Bräse, S. J. Am. Chem. Soc. 2009, 131, 2086.

    39. [39]

      Fürstner, A.; Radkowski, K. Chem. Commun. 2002, 18, 2182.

    40. [40]

      Félix, G.; Dunoguès, J.; Pisciotti, F.; Galas, R. Angew. Chem., Int. Ed. Engl. 1977, 16, 488.  doi: 10.1002/anie.197704881

    41. [41]

      Blakemore, P. R.; Cole, W. J.; Kocieński, P. J.; Morley, A. Synlett 1998, 26.

    42. [42]

      Abelman, M. M.; Oh, T.; Overman, L. E. J. Org. Chem. 1987, 52, 4130.  doi: 10.1021/jo00227a038

    43. [43]

      (a) Seyferth, D.; Marmor, R. S.; Hilbert, P. J. Org. Chem. 1971, 36, 1379.
      (b) Colvin, E. W.; Hamill, B. J. J. Chem. Soc., Perkin Trans. 1 1977, 869.
      (c) Gilbert, J. C.; Weerasooriya, U. J. Org. Chem. 1979, 44, 4997.

    44. [44]

      Suárez, A.; Fu, G. C.; Angew. Chem., Int. Ed. 2004, 43, 3580.  doi: 10.1002/anie.200454070

    45. [45]

      Yu, X.; Su, F.; Liu, C.; Yuan, H.; Zhao, S.; Zhou, Z.; Quan, T.; Luo, T. J. Am. Chem. Soc. 2016, 138, 6261.  doi: 10.1021/jacs.6b02624

    46. [46]

      (a) Jerphagnon, T.; Pizzuti, M. G.; Minnaard, A. J.; Feringa, B. L. Chem. Soc. Rev. 2009, 38, 1039.
      (b) Alexakis, A.; Krause, N.; Woodward, S. In Copper-Catalyzed Asymmetric Synthesis, Eds.: Alexakis, A.; Krause, N.; Woodward, S., Wiley-VCH, Weinheim, 2014, Chapter 2, pp. 33~68.

    47. [47]

      Alexakis, A.; Benhaim, C.; Rosset, S.; Humam, M. J. Am. Chem. Soc. 2002, 124, 5262.  doi: 10.1021/ja025598k

    48. [48]

      Morita, Y.; Suzuki, M.; Noyori, R. J. Org. Chem. 1989, 54, 1785.  doi: 10.1021/jo00269a006

    49. [49]

      Jeffery, T. J. Chem. Soc., Chem. Commun. 1991, 324.

    50. [50]

      McCulloch, M. W. B.; Berrue, F.; Haltli, B.; Kerr, R. G. J. Nat. Prod. 2011, 74, 2250.  doi: 10.1021/np2006555

    51. [51]

      Zhang, X.; Fang, X.; Xu, M.; Lei, Y.; Wu, Z.; Hu, X. Angew. Chem., Int. Ed. 2019, 58, 7845.  doi: 10.1002/anie.201901651

    52. [52]

      (a) Krautwald, S.; Sarlah, D.; Schafroth, M. A.; Carreira, E. M. Science 2013, 340, 1065.
      (b) Krautwald, S.; Schafroth, M. A.; Sarlah, D.; Carreira, E. M. J. Am. Chem. Soc. 2014, 136, 3020.
      (c) Deng, J.; Zhou, S.; Zhang, W.; Li, J.; Li, R.; Li, A. J. Am. Chem. Soc. 2014, 136, 8185.
      (d) Zhou, S.; Chen, H.; Luo, Y.; Zhang, W.; Li, A. Angew. Chem., Int. Ed. 2015, 54, 6878.
      (e) Jiang, S.; Zeng, X.; Liang, X.; Lei, T.; Wei, K.; Yang, Y. Angew. Chem., Int. Ed. 2016, 55, 4044.
      (f) Liang, X.; Zhang, T.-Y.; Zeng, X.-Y.; Zheng, Y.; Wei, K.; Yang, Y.-R. J. Am. Chem. Soc. 2017, 139, 3364.
      (g) Zhou, S.; Guo, R.; Yang, P.; Li, A. J. Am. Chem. Soc. 2018, 140, 9025.
      (h) Liang, X.; Zhang, T.; Meng, C.; Li, X.; Wei, K.; Yang, Y. Org. Lett. 2018, 20, 4575.
      (i) Yao, J.-N.; Liang, X.; Wei, K.; Yang, Y.-R. Org. Lett. 2019, 21, 8485.

    53. [53]

      Hou, S.-H.; Prichina, A. Y.; Zhang, M.; Dong, G. Angew. Chem., Int. Ed. 2020, 59, 7848.  doi: 10.1002/anie.201915821

    54. [54]

      Abele, S.; Inauen, R.; Spielvogel, D.; Moessner, C. J. Org. Chem. 2012, 77, 4765.  doi: 10.1021/jo3005638

    55. [55]

      Xia, Y.; Lu, G.; Liu, P.; Dong, G. Nature 2016, 539, 546.  doi: 10.1038/nature19849

    56. [56]

      Zhang, S.; Li, Q.; He, G.; Nack, W. A.; Chen, G. J. Am. Chem. Soc. 2015, 137, 531.  doi: 10.1021/ja511557h

    57. [57]

      (a) Stymiest, J. L.; Bagutski, V.; French, R. M.; Aggarwal, V. K. Nature 2008, 456, 778.
      (b) Nave, S.; Sonawane, R. P.; Elford, T. G.; Aggarwal, V. K. J. Am. Chem. Soc. 2010, 132, 17096.
      (c) Elford, T. G.; Nave, S.; Sonawane, R. P.; Aggarwal, V. K. J. Am. Chem. Soc. 2011, 133, 16798.
      (d) Leonori, D.; Aggarwal, V. K. Acc. Chem. Res. 2014, 47, 3174.

    58. [58]

      (a) Escarcena, R.; Perez-Meseguer, J.; del Olmo, E.; Alanis-Garza, B.; Garza-Gonzalez, E.; Salazar-Aranda, R.; De Torres, N. W. Molecules 2015, 20, 7245.
      (b) Hori, T.; Sharpless, K. B. J. Org. Chem. 1978, 43, 1689.
      (c) Wang, D.-Y.; Guo, S.-H.; Pan, G.-F.; Zhu, X.-Q.; Gao, Y.-R.; Wang, Y.-Q. Org. Lett. 2018, 20, 1794.

    59. [59]

      (a) Zhang, Y.; C. Li, J. J. Am. Chem. Soc. 2006, 128, 4242.
      (b) Liu, L.; Floreancig, P. E. Org. Lett. 2009, 11, 3152.
      (c) Lingamurthy, M.; Jagadeesh, Y.; Ramakrishna, K.; Rao, B. V. J. Org. Chem. 2016, 81, 1367.
      (d) Morales-Rivera, C. A.; Floreancig, P. E.; Liu, P. J. Am. Chem. Soc. 2017, 139, 17935.

  • 加载中
    1. [1]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    2. [2]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    3. [3]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    4. [4]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    5. [5]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    6. [6]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    7. [7]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    8. [8]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    9. [9]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    10. [10]

      Zhuomin Zhang Lanrui Yang Baorong Zhang Gongke Li . 化学分析全英课程思政建设初探. University Chemistry, 2025, 40(8): 58-65. doi: 10.12461/PKU.DXHX202410010

    11. [11]

      Zhonghong Yan Chunxia Li Ruolin Yang . Analysis of the Use and Effectiveness of Concept Mapping Assignments in English Medium Instruction of General Chemistry. University Chemistry, 2025, 40(4): 224-231. doi: 10.12461/PKU.DXHX202405138

    12. [12]

      Weizhi Wang Jieling Qin Jie Cao . 仪器分析全英语课程设置的必要性与思政教育实践融合. University Chemistry, 2025, 40(8): 117-123. doi: 10.12461/PKU.DXHX202410067

    13. [13]

      Qin Tu Anju Tao Tongtong Ma Jinyi Wang . Innovative Experimental Teaching of Escherichia coli Detection Based on Paper Chip. University Chemistry, 2024, 39(6): 271-277. doi: 10.3866/PKU.DXHX202309062

    14. [14]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    15. [15]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    16. [16]

      Hui Wang Yiwen Zhang Dong Liu . “三全育人”理念下培养应用型创新人才——以“赛教结合”模式为例的探索与实践. University Chemistry, 2025, 40(6): 37-42. doi: 10.12461/PKU.DXHX202407091

    17. [17]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    18. [18]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    19. [19]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    20. [20]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

Metrics
  • PDF Downloads(80)
  • Abstract views(4861)
  • HTML views(580)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return