Citation: Pun Sai Ho, Miao Qian. Introduction of Eight-Membered Rings to Polycyclic Arenes by Ring Expansion[J]. Chinese Journal of Organic Chemistry, ;2020, 40(10): 3347-3353. doi: 10.6023/cjoc202005033 shu

Introduction of Eight-Membered Rings to Polycyclic Arenes by Ring Expansion

  • Corresponding author: Miao Qian, miaoqian@cuhk.edu.hk
  • Received Date: 14 May 2020
    Revised Date: 26 June 2020
    Available Online: 15 July 2020

    Fund Project: Project supported by the Research Grants Council of Hong Kong (No. GRF 14300919)the Research Grants Council of Hong Kong GRF14300919

Figures(5)

  • A synthetic strategy based on a ring expansion reaction to introduce eight-membered rings into polycyclic aromatic frameworks is reported. The octagon-embedded hexabenzocoronene synthesized with this strategy features a saddle-shaped polycyclic framework as revealed by the single crystal X-ray crystallography.
  • 加载中
    1. [1]

      (a) Narita, A.; Wang, X.-Y.; Feng, X.; Müllen, K. Chem. Soc. Rev. 2015, 44, 6616.
      (b) Segawa, Y.; Ito, H.; Itami, K. Nat. Rev. Mater. 2016, 1, 15002.
      (c) Rickhaus, M.; Mayor, M.; Juríček, M. Chem. Soc. Rev. 2017, 46, 1643.
      (d) Cruz, C. M.; Castro-Fernández, S.; Maçôas, E.; Millán, A.; Campaña, A. G. Synlett 2019, 30, 997.

    2. [2]

      Bharat; Bhola, R.; Bally, T.; Valente, A.; Cyrański, M. K.; Dobrzycki, Ł.; Spain, S. M.; Rempała, P.; Chin, M. R.; King, B. T. Angew. Chem., Int. Ed. 2010, 49, 399.  doi: 10.1002/anie.200905633

    3. [3]

      Barth, W. E.; Lawton, R. G. J. Am. Chem. Soc. 1966, 88, 380.  doi: 10.1021/ja00954a049

    4. [4]

      Luo, J.; Xu, X.; Mao, R.; Miao, Q. J. Am. Chem. Soc. 2012, 134, 13796.  doi: 10.1021/ja3054354

    5. [5]

      (a) Kawasumi, K.; Zhang, Q.; Segawa, Y.; Scott, L. T.; Itami, K. Nat. Chem. 2013, 5, 739.
      (b) Márquez, I. R.; Fuentes, N.; Cruz, C. M.; Puente-Muñoz, V.; Sotorrios, L.; Marcos, M. L.; Choquesillo-Lazarte, D.; Biel, B.; Crovetto, L.; Gómez-Bengoa, E.; González, M. T.; Martin, R.; Cuerva, J. M.; Campaña, A. G. Chem. Sci. 2017, 8, 1068.
      (c) Fukui, N.; Kim, T.; Kim, D.; Osuka, A. J. Am. Chem. Soc. 2017, 139, 9075.
      (d) Gu, X.; Li, H.; Shan, B.; Liu, Z.; Miao, Q. Org. Lett. 2017, 19, 2246.
      (e) Oki, K.; Takase, M.; Mori, S.; Shiotari, A.; Sugimoto, Y.; Ohara, K.; Okujima, T.; Uno, H. J. Am. Chem. Soc. 2018, 140, 10430.
      (f) Fernández-García, J. M.; Evans, P. J.; Medina Rivero, S.; Fernández, I.; García-Fresnadillo, D.; Perles, J.; Casado, J.; Martín, N. J. Am. Chem. Soc. 2018, 140, 17188.
      (g) Farrell, J. M.; Grande, V.; Schmidt, D.; Würthner, F. Angew. Chem. 2019, 131, 16656.

    6. [6]

      Pun, S. H.; Chan, C. K.; Luo, J.; Liu, Z.; Miao, Q. Angew. Chem., Int. Ed. 2018, 57, 1581.  doi: 10.1002/anie.201711437

    7. [7]

      (a) Feng, C.-N.; Kuo, M.-Y.; Wu, Y.-T. Angew. Chem., Int. Ed. 2013, 52, 7791.
      (b) Sakamoto, Y.; Suzuki, T. J. Am. Chem. Soc. 2013, 135, 14074.
      (c) Miller, R. W.; Duncan, A. K.; Schneebeli, S. T.; Gray, D. L.; Whalley, A. C. Chem. Eur. J. 2014, 20, 3705.
      (d) Chen, F.; Hong, Y. S.; Shimizu, S.; Kim, D.; Tanaka, T.; Osuka, A. Angew. Chem., Int. Ed. 2015, 54, 10639.
      (e) Miller, R. W.; Averill, S. E.; Van Wyck, S. J.; Whalley, A. C. J. Org. Chem. 2016, 81, 12001.
      (f) Cheung, K. Y.; Chan, C. K.; Liu, Z.; Miao, Q. Angew. Chem., Int. Ed. 2017, 56, 9003.
      (g) Pun, S. H.; Wang, Y.; Chu, M.; Chan, C. K.; Li, Y.; Liu, Z.; Miao, Q. J. Am. Chem. Soc. 2019, 141, 9680.

    8. [8]

      Mackay, A. L.; Terrones, H. Nature 1991, 352, 762.

    9. [9]

      Kim, K.; Lee, T.; Kwon, Y.; Seo, Y.; Song, J.; Park, J.; Lee, H.; Park, J. Y.; Ihee, H.; Cho, S. J.; Ryoo, R. Nature 2016, 535, 131.  doi: 10.1038/nature18284

    10. [10]

      Braun, E.; Lee, Y.; Moosavi, S. M.; Barthel, S.; Mercado, R.; Baburin, I. A.; Proserpio, D. M.; Smit, B. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, E8116.  doi: 10.1073/pnas.1805062115

    11. [11]

      (a) Pun, S. H.; Miao, Q. Acc. Chem. Res. 2018, 51, 1630.
      (b) Márquez, I. R.; Castro-Fernández, S.; Millán, A.; Campaña, A. G. Chem. Commun. 2018, 54, 6705.
      (c) Stępień, M.; Majewski, M. A. Angew. Chem., Int. Ed. 2019, 58, 86.

    12. [12]

      Christoph, H.; Grunenberg, J.; Hopf, H.; Dix, I.; Jones, P. G.; Scholtissek, M.; Maier, G. Chem. Eur. J. 2008, 14, 5604.  doi: 10.1002/chem.200701837

    13. [13]

      (a) Wong, H. N. C.; Sondheimer, F. Tetrahedron 1981, 37, 99.
      (b) Wong, H. N. C. Acc. Chem. Res. 1989, 22, 145.

    14. [14]

      (a) Müller, M.; Iyer, V. S.; Kübel, C.; Enkelmann, V.; Müllen, K. Angew. Chem., Int. Ed. Engl. 1997, 36, 1607.
      (b) Nobusue, S.; Fujita, K.; Tobe, Y. Org. Lett. 2017, 19, 3227.
      (c) Tamoto, A.; Aratani, N.; Yamada, H. Chem. Eur. J. 2017, 23, 16388.

    15. [15]

      Cheung, K. Y.; Xu, X.; Miao, Q. J. Am. Chem. Soc. 2015, 137, 3910.  doi: 10.1021/jacs.5b00403

    16. [16]

      Resendiz, M. J. E.; Garcia-Garibay, M. A. Org. Lett. 2005, 7, 371.  doi: 10.1021/ol0480527

    17. [17]

      (a) Grzybowski, M.; Skonieczny, K.; Butenschön, H.; Gryko, D. T. Angew. Chem. Int. Ed. 2013, 52, 9900.
      (b) Grzybowski, M.; Sadowski, B.; Butenschön, H.; Gryko, D. Angew. Chem., Int. Ed. 2019, 59, 2998.

    18. [18]

      (a) Scholl, R.; Mansfeld, J. Ber. Dtsch. Chem. Ges. 1910, 43, 1734.
      (b) Scholl, R.; Seer, C.; Weitzenböck, R. Ber. Dtsch. Chem. Ges. 1910, 43, 2202.

    19. [19]

      Zhai, L.; Shukla, R.; Rathore, R. Org. Lett. 2009, 11, 3474.  doi: 10.1021/ol901331p

    20. [20]

      (a) Plunkett, K. N.; Godula, K.; Nuckolls, C.; Tremblay, N.; Whalley, A. C.; Xiao, S. Org. Lett. 2009, 11, 2225.
      (b) Zhai, L.; Shukla, R.; Wadumethrige, S. H.; Rathore, R. J. Org. Chem. 2010, 75, 4748.
      (c) Ip, H.-W.; Ng, C.-F.; Chow, H.-F.; Kuck, D. J. Am. Chem. Soc. 2016, 138, 13778.

    21. [21]

      (a) Hennig, R.; Metz, P. Angew. Chem. Int. Ed. 2009, 48, 1157.
      (b) Sakai, T.; Ito, S.; Furuta, H.; Kawahara, Y.; Mori, Y. Org. Lett. 2012, 14, 4564.

    22. [22]

      (a) Chaffins, S.; Brettreich, M.; Wudl, F. Synthesis 2002, 9, 1191.
      (b) Sletten, E. M.; Nakamura, H.; Jewett, J. C.; Bertozzi, C. R. J. Am. Chem. Soc. 2010, 132, 11799.

    23. [23]

      King, B. T.; Kroulik, J.; Robertson, C. R.; Rempala, P.; Hilton, C. L.; Korinek, J. D.; Gortari, L. M. J. Org. Chem. 2007, 72, 2279.  doi: 10.1021/jo061515x

    24. [24]

      CCDC2003773 contains the crystallographic data for 9. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

    25. [25]

      Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic Chemistry, University Science Books, Sausalito, 2004, Chapter 1, p. 22.

    26. [26]

      The commonly used formal potential of the redox couple of ferrocenium/ferrocene (Fc+/Fc) in the Fermi scale is -5.1 eV, which is calculated on the basis of an approximation neglecting solvent effects using a work function of 4.46 eV for the normal hydrogen electrode (NHE) and an electrochemical potential of 0.64 V for (Fc+/Fc) versus NHE. See: Cardona, C. M.; Li, W.; Kaifer, A. E.; Stockdale, D.; Bazan, G. C. Adv. Mater. 2011, 23, 2367.

    27. [27]

      (a) Wu, J.; Pisula, W.; Müllen, K. Chem. Rev. 2007, 107, 718.
      (b) Zhi, L.; Müllen, K. J. Mater. Chem. 2008, 18, 1472.

  • 加载中
    1. [1]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    2. [2]

      Wenling YuanFengli LiZhe ChenQiaoxin XuZhenhua GuanNanyu YaoZhengxi HuJunjun LiuYuan ZhouYing YeYonghui Zhang . AbnI: An α-ketoglutarate-dependent dioxygenase involved in brassicicene CH functionalization and ring system rearrangement. Chinese Chemical Letters, 2024, 35(5): 108788-. doi: 10.1016/j.cclet.2023.108788

    3. [3]

      Yue SunLiming YangYaohang ChengGuanghui AnGuangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250

    4. [4]

      Qiuyun LiYannan ZhuYining WangGang QiWen-Juan HaoKelu YanBo Jiang . Catalytic CH activation-initiated transdiannulation: An oxygen transfer route to ring-fluorinated tricyclic γ-lactones. Chinese Chemical Letters, 2024, 35(9): 109494-. doi: 10.1016/j.cclet.2024.109494

    5. [5]

      Wenyu GaoLiming ZhangChuang ZhaoLixiang LiuXingran YangJinbo Zhao . Controlled semi-Pinacol rearrangement on a strained ring: Efficient access to multi-substituted cyclopropanes by group migration strategy. Chinese Chemical Letters, 2024, 35(9): 109447-. doi: 10.1016/j.cclet.2023.109447

    6. [6]

      Rong-Nan YiWei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787

    7. [7]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    8. [8]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    9. [9]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    10. [10]

      Jingyuan YangXinyu TianLiuzhong YuanYu LiuYue WangChuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745

    11. [11]

      Jie YangXin-Yue LouDihua DaiJingwei ShiYing-Wei Yang . Desymmetrized pillar[8]arenes: High-yield synthesis, functionalization, and host-guest chemistry. Chinese Chemical Letters, 2025, 36(1): 109818-. doi: 10.1016/j.cclet.2024.109818

    12. [12]

      Shuai Liang Wen-Jing Jiang Ji-Xiang Hu . Achieving colossal anisotropic thermal expansion via synergism of spin crossover and rhombus deformation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100430-100430. doi: 10.1016/j.cjsc.2024.100430

    13. [13]

      Xixian SunShengke LiRuibing WangLeyong Wang . Functional macrocyclic arenes with active binding sites inside cavity for biomimetic molecular recognition. Chinese Chemical Letters, 2025, 36(4): 110806-. doi: 10.1016/j.cclet.2024.110806

    14. [14]

      Xueru ZhaoAopu WangShimin WangZhijie SongLi MaLi Shao . Adsorption and visual detection of nitro explosives by pillar[n]arenes-based host–guest interactions. Chinese Chemical Letters, 2025, 36(4): 110205-. doi: 10.1016/j.cclet.2024.110205

    15. [15]

      Zhengyi ShiJie YinYang XiaoZhangrong HouFei SongJianping WangQingyi TongChangxing QiYonghui Zhang . Unprecedented sesquiterpene-polycyclic polyprenylated acylphloroglucinol adduct against acute myeloid leukemia via inhibiting mitochondrial complex Ⅴ. Chinese Chemical Letters, 2024, 35(10): 109458-. doi: 10.1016/j.cclet.2023.109458

    16. [16]

      Chunmao YuanYanrong ZengLei HuangYu MouJun JinPing YiYanmei LiXiaojiang Hao . Hymoins A–C, three unusual polycyclic polyprenylated acylphloroglucinols with lipid-lowering activity from Hypericum monogynum. Chinese Chemical Letters, 2025, 36(3): 109859-. doi: 10.1016/j.cclet.2024.109859

    17. [17]

      Tingting HuangZhuanlong DingHao LiuPing-An ChenLongfeng ZhaoYuanyuan HuYifan YaoKun YangZebing Zeng . Electron-transporting boron-doped polycyclic aromatic hydrocarbons: Facile synthesis and heteroatom doping positions-modulated optoelectronic properties. Chinese Chemical Letters, 2024, 35(4): 109117-. doi: 10.1016/j.cclet.2023.109117

    18. [18]

      Wu-Yang LiuXin-Xiang LeiWen-Ji WangJun-Mian TianYu-Qi GaoJin-Ming Gao . Hyperforatone A, the 1,8-seco rearranged polycyclic polyprenylated acylphloroglucinol with a unique bicyclo[5.4.0]undecane core from Hypericum perforatum. Chinese Chemical Letters, 2025, 36(4): 110478-. doi: 10.1016/j.cclet.2024.110478

    19. [19]

      Peng ChenLijuan LiangYufei ZhuZhimin XingZhenhua JiaTeck-Peng Loh . Strategies for constructing seven-membered rings: Applications in natural product synthesis. Chinese Chemical Letters, 2024, 35(6): 109229-. doi: 10.1016/j.cclet.2023.109229

    20. [20]

      Yan LuoYan-Jiao LuMei-Mei PanYu-Feng LiangWei-Min ShiChun-Hua ChenCui LiangGui-Fa SuDong-Liang Mo . Rapidly diastereoselective assembly of ten-membered N-heterocycles between two 1,3-dipoles and their diversity to access fused N-heterocycles. Chinese Chemical Letters, 2025, 36(5): 110207-. doi: 10.1016/j.cclet.2024.110207

Metrics
  • PDF Downloads(13)
  • Abstract views(1461)
  • HTML views(234)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return