Citation: Liu Yichen, Cheng Jiefei, Hong Ran. Asymmetric Synthesis of Prodrug Nucleotides (ProTides): Construction of the P-Stereogenic Centers[J]. Chinese Journal of Organic Chemistry, ;2020, 40(10): 3237-3248. doi: 10.6023/cjoc202005030 shu

Asymmetric Synthesis of Prodrug Nucleotides (ProTides): Construction of the P-Stereogenic Centers

  • Corresponding author: Liu Yichen, liuyc@mail.sioc.ac.cn Cheng Jiefei, jaycheng2008@163.com Hong Ran, rhong@sioc.ac.cn
  • Received Date: 13 May 2020
    Revised Date: 11 June 2020
    Available Online: 19 June 2020

    Fund Project: Key Research Program of Frontier Sciences QYZDY-SSW-SLH026Strategic Priority Research Program of the Chinese Academy of Sciences XDB20000000Project supported by the Key Research Program of Frontier Sciences (No. QYZDY-SSW-SLH026); the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB20000000)

Figures(17)

  • As an antivirus drug, remdesivir is currently in clinical studies for the treatment of COVID-19. Remdesivir is a prodrug originally developed by Gilead for the treatment of Ebola. The prodrug nucleotide (ProTide) technology is a prodrug-designing strategy developed by McGuigan and co-workers, in which a phosphoramidate side-chain is covalently attached to the hydroxy group of a drug molecule in order to enhance the cell permeability and metabolic activation efficiency. This approach has proved to be very successful in the identification of nucleoside analogues with antiviral or antitumor activities. It is also adapted in the application of non-nucleoside agents, such as neurodegeneration therapeutics, further demonstrating its usefulness in drug discovery. The chirality of the pentavalent phosphorous plays a significant role in the bioactivity of a ProTide molecule. Therefore, the efficient synthesis of such chemical scaffold in a highly enantioselective manner is very desirable and has intrigued great interests from both academia and pharmaceutical industry. In this review, based on the reactions employing optically pure P(V) precursors or P-racemic P(V) precursors, the recent advances on the stereoselective assembly of ProTide compounds are summarized. Various innovative strategies, including (dynamic) kinetic resolutions, were implemented to construct the vital P-stereogenic center with high regio- and stereo-selectivity. It is notable that several methods could be performed at kilogram scale, which are highlighted to showcase their practical values in the process chemistry. The asymmetric synthesis of enantiopure phosphoramidate precursors is illustrated in detail which will be informative for future drug development. Moreover, the clinical performance of some investigational ProTide drugs is also briefly discussed.
  • 加载中
    1. [1]

    2. [2]

      Examples: (a) Knouse, K. W.; deGruyter, J. N.; Schmidt, M. A.; Zheng, B.; Vantourout, J. C.; Kingston, C.; Mercer, S. E.; McDonald, I. M.; Olson, R. E.; Zhu, Y.; Hang, C.; Zhu, J.; Yuan, C.; Wang, Q.; Park, P.; Eastgate, M. D.; Baran, P. S. Science 2018, 361, 1234.
      (b) Ager, C. R.; Zhang, H.; Wei, Z.; Jones, P.; Curran, M. A.; Di Francesco, M. E. Bioorg. Med. Chem. Lett. 2019, 29, 126640.
      (c) Xu, D.; Rivas-Bascon, N.; Padial, N. M.; Knouse, K. W.; Zheng, B.; Vantourout, J. C.; Schmidt, M. A.; Eastgate, M. D.; Baran, P. S. J. Am. Chem. Soc. 2020, 142, 5785.

    3. [3]

      Reviews: (a) Jordheim, L. P.; Durantel, D.; Zoulim, F.; Dumontet, C. Nat. Rev. Drug Discovery 2013, 12, 447.
      (b) Thornton, P. J.; Kadri, H.; Miccoli, A.; Mehellou, Y. J. Med. Chem. 2016, 59, 10400.

    4. [4]

      Examples: (a) McGuigan, C.; Tsang, H.-W.; Sutton, P.; De Clercq, E.; Balzarini, J. Antiviral Chem. Chemother. 1998, 9, 109.
      (b) McGuigan, C.; Derudas, M.; Gonczy, B.; Hinsinger, K.; Kandil, S.; Pertusati, F.; Serpi, M.; Snoeck, R.; Andrei, G.; Balzarini, J.; McHugh, T. D.; Maitra, A.; Akorli, E.; Evangelopoulos, D.; Bhakta, S. Bioorg. Med. Chem. 2014, 22, 2816.
      (c) McGuigan, C.; Murziani, P.; Slusarczyk, M.; Gonczy, B.; Vande Voorde, J.; Liekens, S.; Balzarini, J. J. Med. Chem. 2011, 54, 7247.
      (d) McGuigan, C.; Perry, A.; Yarnold, C.; Sutton, P.; Lowe, D.; Miller, W.; Rahim, S.; Slater, M. Antiviral Chem. Chemother. 1998, 9, 233.
      (e) Slusarczyk, M.; Lopez, M. H.; Balzarini, J.; Mason, M.; Jiang, W. G.; Blagden, S.; Thompson, E.; Ghazaly, E.; McGuigan, C. J. Med. Chem. 2014, 57, 1531.
      (f) Toti, K. S.; Derudas, M.; Pertusati, F.; Sinnaeve, D.; Van den Broeck, F.; Margamuljana, L.; Martins, J. C.; Herdewijn, P.; Balzarini, J.; McGuigan, C.; Van Calenbergh, S. J. Org. Chem. 2014, 79, 5097.

    5. [5]

      Review:Slusarczyk, M.; Serpi, M.; Pertusati, F. Antiviral Chem. Chemother. 2018, 26, 1.

    6. [6]

      For an overview, see: (a) Alanazi, A. S.; James, E.; Mehellou, Y. ACS Med. Chem. Lett. 2019, 10, 2.
      (b) Mehellou, Y.; Rattan, H. S.; Balzarini, J. J. Med. Chem. 2018, 61, 2211.

    7. [7]

      Serpi, M.; Bibbo, R.; Rat, S.; Roberts, H.; Hughes, C.; Caterson, B.; Alcaraz, M. J.; Gibert, A. T.; Verson, C. R.; McGuigan, C. J. Med. Chem. 2012, 55, 4629.  doi: 10.1021/jm300074y

    8. [8]

      Lentini, N. A.; Foust, B. J.; Hsiao, C. C.; Wiemer, A. J.; Wiemer, D. F. J. Med. Chem. 2018, 61, 8658.  doi: 10.1021/acs.jmedchem.8b00655

    9. [9]

      Osgerby, L.; Lai, Y. C.; Thornton, P. J.; Amalfitano, J.; Le Duff, C. S.; Jabeen, I.; Kadri, H.; Miccoli, A.; Tucker, J. H. R.; Muqit, M. M. K.; Mehellou, Y. J. Med. Chem. 2017, 60, 3518.  doi: 10.1021/acs.jmedchem.6b01897

    10. [10]

      James, E.; Pertusati, F.; Brancale, A.; McGuigan, C. Bioorg. Med. Chem. Lett. 2017, 27, 1371.  doi: 10.1016/j.bmcl.2017.02.011

    11. [11]

      Other neurodegenerative diseases: (a) Morozzi, C.; Sedlakova, J.; Serpi, M.; Avigliano, M.; Carbajo, R.; Sandoval, L.; Valles-Ayoub, Y.; Crutcher, P.; Thomas, S.; Pertusati, F. J. Med. Chem. 2019, 62, 8178.
      (b) Elbaum, D.; Beconi, M. G.; Monteagudo, E.; Di Marco, A.; Quinton, M. S.; Lyons, K. A.; Vaino, A.; Harper, S. PLoS One 2018, 13, e0192028.

    12. [12]

      Cavaliere, A.; Probst, C. K.; Paisey, J. S.; Marshall, C.; Dheere, K. H. A.; Aigbirhio, F.; McGuigan, C.; Westwell, D. A. Molecules 2020, 25, 704.  doi: 10.3390/molecules25030704

    13. [13]

      Sofia, M. J.; Bao, D.; Chang, W.; Du, J.; Nagarathnam, D.; Rachakonda, S.; Reddy, P. G.; Ross, B. S.; Wang, P.; Zhang, H. R.; Bansal, S.; Espiritu, C.; Keilman, M.; Lam, A. M.; Steuer, H. M.; Niu, C.; Otto, M. J.; Furman, P. A. J. Med. Chem. 2010, 53, 7202.  doi: 10.1021/jm100863x

    14. [14]

      Chapman, H.; Kernan, M.; Prisbe, E.; Rohloff, J.; Sparacino, M.; Terhorst, T.; Yu, R. Nucleosides, Nucleotides Nucleic Acids 2001, 20, 621.

    15. [15]

      Kolodiazhnyi, O. I.; Kolodiazhna, A. Tetrahedron: Asymmetry 2017, 28, 1651.  doi: 10.1016/j.tetasy.2017.10.022

    16. [16]

      (a) Roman, C. A.; Balzarini, J.; Meier, C. J. Med. Chem. 2010, 53, 7675.
      (b) Arbelo Román, C.; Wasserthal, P.; Balzarini, J.; Meier, C. Eur. J. Org. Chem. 2011, 2011, 4899.

    17. [17]

      Peyrottes, S.; Périgaud, C. In Chemical Synthesis of Nucleoside Analogues, Ed.:Merino, P., Wiley, Hoboken, 2013, p. 229.

    18. [18]

      Pradere, U.; Garnier-Amblard, E. C.; Coats, S. J.; Amblard, F.; Schinazi, R. F. Chem. Rev. 2014, 114, 9154.  doi: 10.1021/cr5002035

    19. [19]

      Nie, B.; Jin, C.; Zhong, W.; Ren, Q.; Zhang, Y.; Zhang, J. Chin. J. Org. Chem. 2017, 37, 2818(in Chinese).
       

    20. [20]

      Gao, M.; Liu, H.; Lian, Y.; Gao, X.; Geng, Y.; Li, W. Chin. J. Org. Chem. 2019, 39, 974(in Chinese).
       

    21. [21]

      Ross, B. S.; Reddy, P. G.; Zhang, H. R.; Rachakonda, S.; Sofia, M. J. J. Org. Chem. 2011, 76, 8311.  doi: 10.1021/jo201492m

    22. [22]

      Cho, A.; Zhang, L.; Xu, J.; Lee, R.; Butler, T.; Metobo, S.; Aktoudianakis, V.; Lew, W.; Ye, H.; Clarke, M.; Doerffler, E.; Byun, D.; Wang, T.; Babusis, D.; Carey, A. C.; German, P.; Sauer, D.; Zhong, W.; Rossi, S.; Fenaux, M.; McHutchison, J. G.; Perry, J.; Feng, J.; Ray, A. S.; Kim, C. U. J. Med. Chem. 2014, 57, 1812.  doi: 10.1021/jm400201a

    23. [23]

      Peng, Y.; Yu, W.; Li, E.; Kang, J.; Wang, Y.; Yang, Q.; Liu, B.; Zhang, J.; Li, L.; Wu, J.; Jiang, J.; Wang, Q.; Chang, J. J. Med. Chem. 2016, 59, 3661.  doi: 10.1021/acs.jmedchem.5b01807

    24. [24]

      Li, E.; Wang, Y.; Yu, W.; Lv, Z.; Peng, Y.; Liu, B.; Li, S.; Ho, W.; Wang, Q.; Li, H.; Chang, J. Eur. J. Med. Chem. 2018, 143, 107.  doi: 10.1016/j.ejmech.2017.11.024

    25. [25]

      Zhen, L.; Dai, L.; Wen, X.; Yao, L.; Jin, X.; Yang, X. W.; Zhao, W.; Yu, S. Q.; Yuan, H.; Wang, G.; Sun, H. J. Med. Chem. 2017, 60, 6077.  doi: 10.1021/acs.jmedchem.7b00262

    26. [26]

      Alexandre, F. R.; Badaroux, E.; Bilello, J. P.; Bot, S.; Bouisset, T.; Brandt, G.; Cappelle, S.; Chapron, C.; Chaves, D.; Convard, T.; Counor, C.; Da Costa, D.; Dukhan, D.; Gay, M.; Gosselin, G.; Griffon, J. F.; Gupta, K.; Hernandez-Santiago, B.; La Colla, M.; Lioure, M. P.; Milhau, J.; Paparin, J. L.; Peyronnet, J.; Parsy, C.; Pierra Rouviere, C.; Rahali, H.; Rahali, R.; Salanson, A.; Seifer, M.; Serra, I.; Standring, D.; Surleraux, D.; Dousson, C. B. Bioorg. Med. Chem. Lett. 2017, 27, 4323.

    27. [27]

      Simmons, B. L.; Campos, K. R.; Klapars, A.; Stewart, A. J.; Mayes, B. A.; Maligres, P. E.; Hyde, A.; Silverman, S. M.; Zhong, Y.-L.; Moussa, A. M.; Baker, K.; Valkenburg, K. V. WO 2016/064797, 2016.

    28. [28]

      Lawitz, E.; Gane, E.; Feld, J. J.; Buti, M.; Foster, G. R.; Rabinovitz, M.; Burnevich, E.; Katchman, H.; Tomasiewicz, K.; Lahser, F.; Jackson, B.; Shaughnessy, M.; Klopfer, S.; Yeh, W. W.; Robertson, M. N.; Hanna, G. J.; Barr, E.; Platt, H. L.; Investigators, C. B.-S. J. Viral Hepatitis 2019, 26, 1127.

    29. [29]

      Fu, M.; Ge, M.; Li, L.; Ding, J. CN 2017105854435, 2017.

    30. [30]

      Yin, X.; Shi, S.; Tang, J.; Ma, G.; Wu, M. CN 201710748054, 2019.

    31. [31]

      (a) Warren, T. K.; Jordan, R.; Lo, M. K.; Ray, A. S.; Mackman, R. L.; Soloveva, V.; Siegel, D.; Perron, M.; Bannister, R.; Hui, H. C.; Larson, N.; Strickley, R.; Wells, J.; Stuthman, K. S.; Van Tongeren, S. A.; Garza, N. L.; Donnelly, G.; Shurtleff, A. C.; Retterer, C. J.; Gharaibeh, D.; Zamani, R.; Kenny, T.; Eaton, B. P.; Grimes, E.; Welch, L. S.; Gomba, L.; Wilhelmsen, C. L.; Nichols, D. K.; Nuss, J. E.; Nagle, E. R.; Kugelman, J. R.; Palacios, G.; Doerffler, E.; Neville, S.; Carra, E.; Clarke, M. O.; Zhang, L.; Lew, W.; Ross, B.; Wang, Q.; Chun, K.; Wolfe, L.; Babusis, D.; Park, Y.; Stray, K. M.; Trancheva, I.; Feng, J. Y.; Barauskas, O.; Xu, Y.; Wong, P.; Braun, M. R.; Flint, M.; McMullan, L. K.; Chen, S.-S.; Fearns, R.; Swaminathan, S.; Mayers, D. L.; Spiropoulou, C. F.; Lee, W. A.; Nichol, S. T.; Cihlar, T.; Bavari, S. Nature 2016, 531, 381.
      (b) Siegel, D.; Hui, H. C.; Doerffler, E.; Clarke, M. O.; Chun, K.; Zhang, L.; Neville, S.; Carra, E.; Lew, W.; Ross, B.; Wang, Q.; Wolfe, L.; Jordan, R.; Soloveva, V.; Knox, J.; Perry, J.; Perron, M.; Stray, K. M.; Barauskas, O.; Feng, J. Y.; Xu, Y.; Lee, G.; Rheingold, A. L.; Ray, A. S.; Bannister, R.; Strickley, R.; Swaminathan, S.; Lee, W. A.; Bavari, S.; Cihlar, T.; Lo, M. K.; Warren, T. K.; Mackman, R. L. J. Med. Chem. 2017, 60, 1648.

    32. [32]

      (a) Sheahan, T. P.; Sims, A. C.; Graham, R. L.; Menachery, V. D.; Gralinski, L. E.; Case, J. B.; Leist, S. R.; Pyrc, K.; Feng, J. Y.; Trantcheva, I.; Bannister, R.; Park, Y.; Babusis, D.; Clarke, M. O.; Mackman, R. L.; Spahn, J. E.; Palmiotti, C. A.; Siegel, D.; Ray, A. S.; Cihlar, T.; Jordan, R.; Denison, M. R.; Baric, R. S. Sci. Transl. Med. 2017, 9, eaal3653.
      (b) de Wit, E.; Feldmannb, F.; Cronina, J.; Jordanc, R.; Okumurad, A.; Thomasa, T.; Scottb, D.; Cihlarc, T.; Feldmann H. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 6771.
      (c) Sheahan, T. P.; Sims, A. C.; Leist, S. R.; Schäfer, A.; Won, J.; Brown, A. J.; Montgomery, S. A.; Hogg, A.; Babusis, D.; Clarke, M. O.; Spahn, J. E.; Bauer, L.; Sellers, S.; Porter, D.; Feng, J. Y.; Cihlar, T.; Jordan, R.; Denison, M. R.; Baric, R. S. Nat. Commun. 2020, 11, 222.

    33. [33]

      Mulangu, S.; Dodd, L. E.; Davey, R. T. Jr.; Tshiani Mbaya, O.; Proschan, M.; Mukadi, D.; Lusakibanza Manzo, M.; Nzolo, D.; Tshomba Oloma, A.; Ibanda, A.; Ali, R.; Coulibaly, S.; Levine, A. C.; Grais, R.; Diaz, J.; Lane, H. C.; Muyembe-Tamfum, J. J.; Group, P. W.; Sivahera, B.; Camara, M.; Kojan, R.; Walker, R.; Dighero-Kemp, B.; Cao, H.; Mukumbayi, P.; Mbala-Kingebeni, P.; Ahuka, S.; Albert, S.; Bonnett, T.; Crozier, I.; Duvenhage, M.; Proffitt, C.; Teitelbaum, M.; Moench, T.; Aboulhab, J.; Barrett, K.; Cahill, K.; Cone, K.; Eckes, R.; Hensley, L.; Herpin, B.; Higgs, E.; Ledgerwood, J.; Pierson, J.; Smolskis, M.; Sow, Y.; Tierney, J.; Sivapalasingam, S.; Holman, W.; Gettinger, N.; Vallee, D.; Nordwall, J.; Team, P. C. S. N. Engl. J. Med. 2019, 381, 2293.  doi: 10.1056/NEJMoa1910993

    34. [34]

      (a) Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Cell Res. 2020, 30, 269.
      (b) Williamson, B. N.; Feldmann, F.; Schwarz, B.; Meade-White, K.; Porter, D. P.; Schulz, J.; van Doremalen, N.; Leighton, I.; Yinda, C. K.; Pérez-Pérez, L.; Okumura, A.; Lovaglio, J.; Hanley, P. W.; Saturday, G.; Bosio, C. M.; Anzick, S.; Barbian, K.; Cihlar, T.; Martens, C.; Scott, D. P.; Munster, V. J.; de Wit, E. Nature 2020, 585, 273.
      (c) For a review, see: Amirian, E. S.; Levy, J. K. One Health 2020, 9, 100128.

    35. [35]

      Grein, J.; Ohmagari, N.; Shin, D.; Diaz, G.; Asperges, E.; Castagna, A.; Feldt, T.; Green, G.; Green, M. L.; Lescure, F. X.; Nicastri, E.; Oda, R.; Yo, K.; Quiros-Roldan, E.; Studemeister, A.; Redinski, J.; Ahmed, S.; Bernett, J.; Chelliah, D.; Chen, D.; Chihara, S.; Cohen, S. H.; Cunningham, J.; D'Arminio Monforte, A.; Ismail, S.; Kato, H.; Lapadula, G.; L'Her, E.; Maeno, T.; Majumder, S.; Massari, M.; Mora-Rillo, M.; Mutoh, Y.; Nguyen, D.; Verweij, E.; Zoufaly, A.; Osinusi, A. O.; DeZure, A.; Zhao, Y.; Zhong, L.; Chokkalingam, A.; Elboudwarej, E.; Telep, L.; Timbs, L.; Henne, I.; Sellers, S.; Cao, H.; Tan, S. K.; Winterbourne, L.; Desai, P.; Mera, R.; Gaggar, A.; Myers, R. P.; Brainard, D. M.; Childs, R.; Flanigan, T. N. Engl. J. Med. 2020, doi:10.1056/NEJMoa2007016.  doi: 10.1056/NEJMoa2007016

    36. [36]

      Goldman, J. D.; Lye, D. C. B.; Hui, D. S.; Marks, K. M.; Bruno, R.; Montejano, R.; Spinner, C. D.; Galli, M.; Ahn, M. Y.; Nahass, R. G.; Chen, Y. S.; SenGupta, D.; Hyland, R. H.; Osinusi, A. O.; Cao, H.; Blair, C.; Wei, X.; Gaggar, A.; Brainard, D. M.; Towner, W. J.; Muñoz, J.; Mullane, K. M.; Marty, F. M.; Tashima, K. T.; Diaz, G.; Subramanian, A. N. Engl. J. Med. 2020, doi:10.1056/NEJMoa- 2015301.  doi: 10.1056/NEJMoa-2015301

    37. [37]

      Hinton, D. M. Veklury (remdesivir) EUA Letter of Authorization, https://www.fda.gov/media/137564/download, US Food & Drug Administration, accessed October 2nd, 2020.

    38. [38]

      Report on the Special Authorization of Veklury (in Japanese), https://www.mhlw.go.jp/content/10900000/000631266.pdf, Ministry of Health, Labour and Welfare, accessed October 2nd, 2020.

    39. [39]

      Wang, Y.; Zhang, D.; Du, G.; Du, R.; Zhao, J.; Jin, Y.; Fu, S.; Gao, L.; Cheng, Z.; Lu, Q.; Hu, Y.; Luo, G.; Wang, K.; Lu, Y.; Li, H.; Wang, S.; Ruan, S.; Yang, C.; Mei, C.; Wang, Y.; Ding, D.; Wu, F.; Tang, X.; Ye, X.; Ye, Y.; Liu, B.; Yang, J.; Yin, W.; Wang, A.; Fan, G.; Zhou, F.; Liu, Z.; Gu, X.; Xu, J.; Shang, L.; Zhang, Y.; Cao, L.; Guo, T.; Wan, Y.; Qin, H.; Jiang, Y.; Jaki, T.; Hayden, F. G.; Horby, P. W.; Cao, B.; Wang, C. Lancet 2020, 395, 1569.  doi: 10.1016/S0140-6736(20)31022-9

    40. [40]

      Beigel, J. H.; Tomashek, K. M.; Dodd, L. E.; Mehta, A. K.; Zingman, B. S.; Kalil, A. C.; Hohmann, E.; Chu, H. Y.; Luetkemeyer, A.; Kline, S.; Lopez de Castilla, D.; Finberg, R. W.; Dierberg, K.; Tapson, V.; Hsieh, L.; Patterson, T. F.; Paredes, R.; Sweeney, D. A.; Short, W. R.; Touloumi, G.; Lye, D. C.; Ohmagari, N.; Oh, M.; Ruiz-Palacios, G. M.; Benfield, T.; Fätkenheuer, G.; Kortepeter, M. G.; Atmar, R. L.; Creech, C. B.; Lundgren, J.; Babiker, A. G.; Pett, S.; Neaton, J. D.; Burgess, T. H.; Bonnett, T.; Green, M.; Makowski, M.; Osinusi, A.; Nayak, S.; Lane, H. C. N. Engl. J. Med. 2020, doi:10.1056/NEJMoa2007764.  doi: 10.1056/NEJMoa2007764

    41. [41]

      For a full list of ongoing clinical trials, see:Eastman, R. T.; Roth, J. S.; Brimacombe, K. R.; Simeonov, A.; Shen, M.; Patnaik, S.; Hall, M. D. ACS Cent. Sci. 2020, 6, 672.  doi: 10.1021/acscentsci.0c00489

    42. [42]

      Vieira, T.; Stevens, A. C.; Chtchemelinine, A.; Gao, D.; Badalov, P.; Heumann, L. Org. Process Res. Dev. 2020, Articles ASAP, doi:10.1021/acs.oprd.0c00172.  doi: 10.1021/acs.oprd.0c00172

    43. [43]

      Simmons, B.; Liu, Z.; Klapars, A.; Bellomo, A.; Silverman, S. M. Org. Lett. 2017, 19, 2218.  doi: 10.1021/acs.orglett.7b00469

    44. [44]

      Wang, H.; Zhang, D.; Yang, Z. CN 2016105990204, 2017.

    45. [45]

      McCabe Dunn, J. M.; Reibarkh, M.; Sherer, E. C.; Orr, R. K.; Ruck, R. T.; Simmons, B.; Bellomo, A. Chem. Sci. 2017, 8, 2804.  doi: 10.1039/C6SC05081F

    46. [46]

      Orr, R. K.; McCabe Dunn, J. M.; Nolting, A.; Hyde, A. M.; Ashley, E. R.; Leone, J.; Sirota, E.; Jurica, J. A.; Gibson, A.; Wise, C.; Oliver, S.; Ruck, R. T. Green Chem. 2018, 20, 2519.  doi: 10.1039/C8GC00102B

    47. [47]

      Xiang, D. F.; Bigley, A. N.; Desormeaux, E.; Narindoshvili, T.; Raushel, F. M. Biochemistry 2019, 58, 3204.  doi: 10.1021/acs.biochem.9b00530

    48. [48]

      Pertusati, F.; McGuigan, C. Chem. Commun. 2015, 51, 8070.  doi: 10.1039/C5CC00448A

    49. [49]

      Tran, K.; Beutner, G. L.; Schmidt, M.; Janey, J.; Chen, K.; Rosso, V.; Eastgate, M. D. J. Org. Chem. 2015, 80, 4994.  doi: 10.1021/acs.joc.5b00392

    50. [50]

      DiRocco, D. A.; Ji, Y.; Sherer, E. C.; Klapars, A.; Reibarkh, M.; Dropinski, J.; Mathew, R.; Maligres, P.; Hyde, A. M.; Limanto, J.; Brunskill, A.; Ruck, R. T.; Campeau, L. C.; Davies, I. W. Science 2017, 356, 426.  doi: 10.1126/science.aam7936

    51. [51]

      (a) Zhang, Z.; Xie, F.; Jia, J.; Zhang, W. J. Am. Chem. Soc. 2010, 132, 15939.
      (b) Liu, S.; Zhang, Z.; Xie, F.; Butt, N. A.; Sun, L.; Zhang, W. Tetrahedron: Asymmetry 2012, 23, 329.

    52. [52]

      Cini, E.; Barreca, G.; Carcone, L.; Manetti, F.; Rasparini, M.; Taddei, M. Eur. J. Org. Chem. 2018, 2622.

  • 加载中
    1. [1]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    2. [2]

      Zheqi Wang Yawen Lin Shunliu Deng Huijun Zhang Jinmei Zhou . Antiviral Strategies: A Brief Review of the Development History of Small Molecule Antiviral Drugs. University Chemistry, 2024, 39(9): 85-93. doi: 10.12461/PKU.DXHX202403108

    3. [3]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    4. [4]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    5. [5]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    6. [6]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    7. [7]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    8. [8]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    9. [9]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    10. [10]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    11. [11]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    12. [12]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    13. [13]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    14. [14]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    15. [15]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    16. [16]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    17. [17]

      Zhijun Huang Jiawei Li Mojin Lu Fa Zhou Limiao Chen Jianhan Huang Younian Liu . Spying Operation of the Rabies Virus. University Chemistry, 2024, 39(9): 164-169. doi: 10.12461/PKU.DXHX202403026

    18. [18]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    19. [19]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    20. [20]

      Yonghui Wang Weilin Chen Yangguang Li . Knowledge Construction of “Solubility of Inorganic Substances” in Elemental Chemistry Teaching. University Chemistry, 2024, 39(4): 261-267. doi: 10.3866/PKU.DXHX202312102

Metrics
  • PDF Downloads(49)
  • Abstract views(2074)
  • HTML views(406)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return