Citation: Ouyang Yao, Xu Xiuhua, Qing Fengling. Oxidative Coupling Reactions of Arylboronic Acids and Fluoroform-Derived AgCF3[J]. Chinese Journal of Organic Chemistry, ;2020, 40(10): 3426-3430. doi: 10.6023/cjoc202005022 shu

Oxidative Coupling Reactions of Arylboronic Acids and Fluoroform-Derived AgCF3

  • Corresponding author: Qing Fengling, flq@mail.sioc.ac.cn
  • Received Date: 9 May 2020
    Revised Date: 3 June 2020
    Available Online: 8 June 2020

    Fund Project: the National Natural Science Foundation of China 21991211Project supported by the National Natural Science Foundation of China (Nos. 21421002, 21991211) and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB20000000)the Strategic Priority Research Program of the Chinese Academy of Sciences XDB20000000the National Natural Science Foundation of China 21421002

Figures(2)

  • A silver-mediated oxidative coupling reaction of arylboronic acids with fluoroform-derived AgCF3 using K2S2O8 as oxidant was developed. This reaction provides a new route to trifluoromethylated arenes.
  • 加载中
    1. [1]

      (a) Purser, S.; Moor, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
      (b) Cametti, M.; Crousse, B.; Metrangolo, P.; Milani, R.; Resnati, G. Chem. Soc. Rev. 2012, 41, 31.
      (c) Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; delPozo, C. A.; Sorochinsky, E.; Fustero, S. V.; Soloshonok, A.; Liu, H. Chem. Rev. 2014, 114, 2432.
      (d) Meanwell, N. A. J. Med. Chem. 2018, 61, 5822.

    2. [2]

      (a) Mullard, A. Nat. Rev. Drug Discovery 2018, 17, 81.
      (b) Mullard, A. Nat. Rev. Drug Discovery 2019, 18, 85.
      (c) Mullard, A. Nat. Rev. Drug Discovery 2020, 19, 79.

    3. [3]

    4. [4]

      For selected examples, see: (a) Oishi, M.; Kondo, H.; Amii, H. Chem. Commun. 2009, 1909.
      (b) Cho, E. J.; Senecal, T. D.; Kinzel, T.; Zhang, Y.; Watson, D. A.; Buchwald, S. L. Science 2010, 328, 1679.
      (c) Zhang, C.-P.; Wang, Z.-L.; Chen, Q.-Y.; Zhang, C.-T.; Gu, Y.-C.; Xiao, J.-C. Angew. Chem., Int. Ed. 2011, 50, 1896.
      (d) Weng, Z.; Lee, R.; Jia, W.; Yuan, Y.; Wang, W.; Feng, X.; Huang, K.-W. Organometallics 2011, 30, 3229.
      (e) Li, X.; Zhao, J.; Zhang, L.; Hu, M.; Wang, L.; Hu, J. Org. Lett. 2015, 17, 298.
      (f) Wei, Y.; Yu, L.; Lin, J.; Zheng, X.; Xiao, J. Chin. J. Chem. 2016, 34, 481.
      (g) Le, C.; Chen, T. Q.; Liang, T.; Zhang, P.; MacMillan, D. W. C. Science 2018, 360, 1010.

    5. [5]

      (a) Danoun, G.; Bayarmagnai, B.; Grunberg, M. F.; Gooßen, L. J. Angew. Chem., Int. Ed. 2013, 52, 7972.
      (b) Wang, X.; Xu, Y.; Mo, F.; Ji, G.; Qiu, D.; Feng, J.; Ye, Y.; Zhang, S.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. 2013, 135, 10330.
      (c) Dai, J.-J.; Fang, C.; Xiao, B.; Yi, J.; Xu, J.; Liu, Z.-J.; Lu, X.; Liu, L. Fu, Y. J. Am. Chem. Soc. 2013, 135, 8436.
      (d) Lishchynskyi, A.; Berthon, G.; Grushin, V. V. Chem. Commun. 2014, 50, 10237.
      (e) Zhang, K.; Xu, X.-H.; Qing, F.-L. J. Org. Chem. 2015, 80, 7658.
      (f) Hong, J.; Wang, G.; Huo, L.; Zheng, C. Chin. J. Chem. 2017, 35, 1761.

    6. [6]

      Ye, F.; Berger, F.; Jia, H.; Ford, J.; Wortman, A.; Börgel, J.; Genicot, C.; Ritter, T. Angew. Chem., Int. Ed. 2019, 58, 14615.  doi: 10.1002/anie.201906672

    7. [7]

      (a) Yang, J.-Y.; Xu, X.-H.; Qing, F.-L. J. Fluorine Chem. 2015, 180, 175.
      (b) Yang, J.-Y.; Xu, X.-H.; Qing, F.-L. J. Fluorine Chem. 2016, 186, 45.
      (c) Pandey, V. K.; Anbarasan, P. RSC Adv. 2016, 6, 18525.

    8. [8]

    9. [9]

      (a) Chu, L.; Qing, F.-L. Org. Lett. 2010, 12, 5060.
      (b) Senecal, T. D.; Parsons, A. T.; Buchwald, S. L. J. Org. Chem. 2011, 76, 1174.
      (c) Jiang, X.; Chu, L.; Qing, F.-L. J. Org. Chem. 2012, 77, 1251.
      (d) Nguyen, T. V.; Ong, T. D.; Lam, A. H. M.; Pham, V. T.; Phan, N. T. S.; Truong, T. Mol. Catal. 2017, 436, 60.

    10. [10]

      (a) Xu, J.; Luo, D.-F.; Xiao, B.; Liu, Z.-J.; Gong, T.-J.; Fu, Y.; Liu, L. Chem. Commun. 2011, 47, 4300.
      (b) Zhang, C.-P.; Cai, J.; Zhou, C.-B.; Wang, X.-P.; Zheng, X.; Gu, Y.-C.; Xiao, J.-C. Chem. Commun. 2011, 47, 9516.
      (c) Liu, T.; Shen, Q. Org. Lett. 2011, 13, 2342.

    11. [11]

      (a) Ye, Y.; Sanford, M. S. J. Am. Chem. Soc. 2012, 134, 9034.
      (b) Ye, Y.; Künzi, S. A.; Sanford, M. S. Org. Lett. 2012, 14, 4979.
      (c) Li, Y.; Wu, L.; Neumann, H.; Beller, M. Chem. Commun. 2013, 49, 2628.

    12. [12]

      (a) Novák, P.; Lishchynskyi, A.; Grushin, V. V. Angew. Chem., Int. Ed. 2012, 51, 7767.
      (b) van der Born, D.; Sewing, C.; Herscheid, J. D. M.; Windhorst, A. D.; Orru, R. V. A.; Vugts, D. J. Angew. Chem., Int. Ed. 2014, 53, 11046.
      (c) Ivashkin, P.; Lemonnier, G.; Cousin, J.; Grégoire, V.; Labar, D.; Jubault, P.; Pannecoucke, X. Chem.-Eur. J. 2014, 20, 9514.

    13. [13]

      (a) Zhang, S.-L.; Bie, W.-F. Dalton Trans. 2016, 45, 17588.
      (b) Zhang, S.-L.; Bie, W.-F. RSC Adv. 2016, 6, 70902.
      (c) Zhang, S.-L.; Xiao, C.; Wan, H.-X. Dalton Trans. 2018, 47, 4779.
      (d) Xiao, C.; Zhang, S.-L. Dalton Trans. 2019, 48, 848.

    14. [14]

      Xiang, J.-X.; Ouyang, Y.; Xu, X.-H.; Qing, F.-L. Angew. Chem., Int. Ed. 2019, 58, 10320.  doi: 10.1002/anie.201905782

    15. [15]

      (a) Liu, J.-B.; Chen, C.; Chu, L.; Chen, Z.-H.; Xu, X.-H.; Qing, F.-L. Angew. Chem., Int. Ed. 2015, 54, 11839.
      (b) Liu, J.-B.; Xu, X.-H.; Qing, F.-L. Org. Lett. 2015, 17, 5048.
      (c) Fu, M.-L.; Liu, J.-B.; Xu, X.-H.; Qing, F.-L. J. Org. Chem. 2017, 82, 3702.
      (d) Zhang, K.; Xu, X.-H.; Qing, F.-L. J. Fluorine Chem. 2017, 196, 24.
      (e) Xiang, J.-X.; Xu, X.-H.; Qing, F.-L. J. Fluorine Chem. 2017, 203, 110.
      (f) Zhu, S.-Q.; Liu, Y.-L.; Li, H.; Xu, X.-H.; Qing, F.-L. J. Am. Chem. Soc. 2018, 140, 11613.

    16. [16]

      (a) Tyrra, W.; Naumann, D. J. Fluorine Chem. 2004, 125, 823.
      (b) Zeng, Y.; Zhang, L.; Zhao, Y.; Ni, C.; Zhao, J.; Hu, J. J. Am. Chem. Soc. 2013, 135, 2955.

    17. [17]

      (a) Ye, Y.; Lee, S. H.; Sanford, M. S. Org. Lett. 2011, 13, 5464.
      (b) Hafner, A.; Bräse, S. Angew. Chem., Int. Ed. 2012, 51, 3713.
      (c) Wu, X.; Chu, L.; Qing, F.-L. Angew. Chem., Int. Ed. 2013, 52, 2198.
      (d) Mao, Z.; Huang, F.; Yu, H.; Chen, J.; Yu, Z.; Xu, Z. Chem.-Eur. J. 2014, 20, 3439.
      (e) Lin, J.-S.; Liu, X.-G.; Zhu, X.-L.; Tan, B.; Liu, X.-Y. J. Org. Chem. 2014, 79, 7084.
      (f) Teng, F.; Cheng, J.; Bolm, C. Org. Lett. 2015, 17, 3166.
      (g) Wu, Y.-B.; Lu, G.-P.; Yuan, T.; Xu, Z.-B.; Wan, L.; Cai, C. Chem. Commun. 2016, 52, 13668.
      (h) Harris, C. F.; Kuehner, C. S.; Bacsa, J.; Soper, J. D. Angew. Chem., Int. Ed. 2018, 57, 1311.

    18. [18]

      (a) Weng, Z.; Lee, R.; Jia, W.; Yuan, Y.; Wang, W.; Feng, X.; Huang, K.-W. Organometallics 2011, 30, 3229.
      (b) de Salinas, S. M.; Mudarra, Á. L.; Benet-Buchholz, J.; Parella, T.; Maseras, F.; Pérez-Temprano, M. H. Chem.-Eur. J. 2018, 24, 11895.

    19. [19]

      (a) Fukuyama, T.; Nishikawa, T.; Ruy, I. Eur. J. Org. Chem. 2020, 1424.
      (b) Deng, Y.; Lu, F.; You, S.; Xia, T.; Zheng, Y.; Lu, C.; Yang, G.; Chen, Z.; Gao, M.; Lei, A. Chin. J. Chem. 2019, 37, 817.
      (c) Wang, H.; Wang, J.; Qiu, W.; Yang, F.; Liu, X.; Tang, J. Chin. J. Chem. 2010, 28, 2416.
      (d) Lin, L.; Hou, C.; Li, H.; Weng, Z. Chem.-Eur. J. 2016, 22, 2075.
      (e) Cottet, F.; Schlosser, M. Eur. J. Org. Chem. 2002, 327.

  • 加载中
    1. [1]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    2. [2]

      Shahua Huang Xiaoming Guo Lin Lin Guangping Chang Sheng Han Zuxin Zhou . Application of “Integration of Industry and Education” in Engineering Chemistry: Improvement of the Pesticide Fipronil Production. University Chemistry, 2024, 39(3): 199-204. doi: 10.3866/PKU.DXHX202309064

    3. [3]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    4. [4]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    5. [5]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    6. [6]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    7. [7]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    8. [8]

      Fengmiao Yu Yang Sheng Chanyue Li Bao Li . The Three Lives of Aspirin. University Chemistry, 2024, 39(9): 115-121. doi: 10.12461/PKU.DXHX202402033

    9. [9]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    10. [10]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    11. [11]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    12. [12]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    13. [13]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    14. [14]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    15. [15]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    16. [16]

      Yuanyi Lu Jun Zhao Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088

    17. [17]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    18. [18]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    19. [19]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    20. [20]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

Metrics
  • PDF Downloads(3)
  • Abstract views(1224)
  • HTML views(192)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return