Citation: Lang Bo, Suleman Muhammad, Lu Ping, Wang Yanguang. Copper(I)-Promoted Trifluoromethylthiolation of 3-Diazoindolin-2-imines with AgSCF3: Synthesis of 3-((Trifluoromethyl)thio)-2-aminoindoles[J]. Chinese Journal of Organic Chemistry, ;2020, 40(10): 3300-3306. doi: 10.6023/cjoc202005011 shu

Copper(I)-Promoted Trifluoromethylthiolation of 3-Diazoindolin-2-imines with AgSCF3: Synthesis of 3-((Trifluoromethyl)thio)-2-aminoindoles

  • Corresponding author: Lu Ping, pinglu@zju.edu.cn Wang Yanguang, orgwyg@zju.edu.cn
  • Received Date: 5 May 2020
    Revised Date: 16 June 2020
    Available Online: 30 July 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21772169, 21632003)the National Natural Science Foundation of China 21772169the National Natural Science Foundation of China 21632003

Figures(3)

  • A facile and efficient method for the synthesis of novel 3-((trifluoromethyl)thio)-2-aminoindoles through copper (I)-promoted trifluoromethylthiolation of 3-diazoindolin-2-imines with AgSCF3 is reported. This methodology features a broad substrate scope of diazo compounds, economical copper(I) catalyst, readily available and stable diazo materials and trifluoromethylthiolating reagent, mild reaction conditions, short reaction time and water assisted higher yields.
  • 加载中
    1. [1]

      (a) Manteau, B.; Pazenok, S.; Vors, J. P.; Leroux, F. R. J. Fluorine Chem. 2010, 131, 140.
      (b) Leroux, F.; Jeschke, P.; Schlosser, M. Chem. Rev. 2005, 105, 827.
      (c) Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165.
      (d) Arnott, J. A.; Planey, S. L. Expert Opin. Drug Discovery 2012, 7, 863.
      (e) Liu, X.; Testa, B.; Fahr, A. Pharm. Res. 2011, 28, 962.

    2. [2]

      (a) Zheng, H.; Huang, Y.; Weng, Z. Tetrahedron Lett. 2016, 57, 1397.
      (b) Yagupolskii, L. M.; Maletina, I. I.; Petko, K. I.; Fedyuk, D. V.; Handrock, R.; Shavaran, S. S.; Klebanov, B. M.; Herzig, S. J. Fluorine Chem. 2001, 109, 87.

    3. [3]

      For selected reviews on trifluoromethylthiolation, see:
      (a) Tlili, A.; Billard, T. Angew. Chem. Int. Ed. 2013, 52, 6818.
      (b) Liu, H.; Jiang, X. Chem. Asian. J. 2013, 8, 2546.
      (c) Boiko, V. N. Beilstein J. Org. Chem. 2010, 6, 880.

    4. [4]

      For selected reviews on the introduction of SCF3 group, see:
      (a) Chu, L.; Qing, F. L. Acc. Chem. Res. 2014, 47, 1513.
      (b) Xu, X. H.; Matsuzaki, K.; Shibata, N. Chem. Rev. 2015, 115, 731.
      (c) Chachignon, H.; Cahard, D. Chin. J. Chem. 2016, 34, 445.
      (d) Shao, X.; Xu, C.; Lu, L.; Shen, Q. Acc. Chem. Res. 2015, 48, 1227.
      (e) Leroux, F.; Jeschke, P.; Schlosser, M. Chem. Rev. 2005, 105, 827.
      (f) Li, S. S.; Wang, J. B. Acta Chim. Sinica 2018, 76, 913(in Chinese).
      (李树森, 王剑波, 化学学报, 2018, 76, 913.)

    5. [5]

      (a) Man, E. H.; Coffman, D. D.; Muetterties E. L. J. Am. Chem. Soc. 1959, 81, 3575.
      (b) Munavalli, S.; Wagner, G. W.; Hashemi, A. B.; Rohrbaugh, D. K.; Durst, H. D. Synth. Commun. 1997, 27, 2847.
      (c) Tyrra, W.; Naumann, D.; Hoge, B.; Yagupolskii, Y. L. J. Fluorine Chem. 2003, 119, 101.
      (d) Chen, H.-T.; Huang, Y.; Qing, F. L.; Xu, X. H. Tetrahedron Lett. 2020, 61, 151628.
      (e) Liu, Y. L.; Qing, F. L.; Xu, X. H. Eur. J. Org. Chem. 2020, 1015.

    6. [6]

      (a) Wang, Q.; Qi, Z.; Xie, F.; Li, X. Adv. Synth. Catal. 2015, 357, 355.
      (b) Baert, F.; Colomb, J.; Billard, T. Angew. Chem. Int. Ed. 2012, 51, 10382.
      (c) Shao, X.; Wang, X.; Yang, T.; Lu, L.; Shen, Q. Angew. Chem. Int. Ed. 2013, 52, 3457.
      (d) Bootwicha, T.; Liu, X.; Pluta, R.; Atodiresei, I.; Rueping, M. Angew. Chem. Int. Ed. 2013, 52, 12856.
      (e) Zhu, X. Li; Xu, J. H.; Cheng, D. J.; Zhao, L. J.; Liu, X. Y.; Tan, B. Org. Lett. 2014, 16, 2192.
      (f) Franco, F.; Meninno, S.; Bengalia, M.; Lattanzi, A. Chem. Commun. 2020, 56, 3073.

    7. [7]

      For selected examples, see:
      (a) Harris, J. F. J. Org. Chem. 1966, 31, 931.
      (b) Zhu, M.; Li, R.; You, Q.; Fu, W.; Guo, W. Asian J. Org, Chem. 2019, 8, 2002.
      (c) Hu, J. J.; Huang, Y. G.; Xu, X. H.; Qing, F. L. Chin. J. Org. Chem. 2019, 39, 177(in Chinese).
      (解晓娟, 张忠, 赵华欣, 万文, 郝健, 有机化学, 2019, 39, 177.)
      (d) Chen, D.; Ji, M. S.; Yao, Y. M.; Zhu, C. Acta Chim. Sinica 2018, 76, 951(in Chinese).
      (陈栋, 吉梅山, 姚英明, 朱晨, 化学学报, 2018, 76, 951.)
      (e) Xiao, Z.; Liu, Y.; Zheng, L.; Liu, C.; Guo, Y.; Chen, Q. Y. J. Org. Chem. 2018, 83, 5836.
      (f) Pan, S.; Huang, Y.; Xu, X. H.; Qing, F. L. Org. Lett. 2017, 19, 4624.
      (g) Xiao, Z.; Liu, Y.; Zheng, L.; Zhou, X.; Xie, Y.; Liu, C.; Guo, Y.; Chen, Q. Y. Tetrahedron 2018, 74, 6213.
      (h) Wu, Hao.; Xiao, Z.; Wu, J.; Guo, Y.; Xiao, J. C.; Liu, C.; Chen, Q. Y. Angew. Chem. Int. Ed. 2015, 54, 4070.
      (i) Dagousset, G.; Simon, C.; Anselmi, E.; Tuccio, B.; Billard, T.; Magnier, E. Chem.-Eur. J. 2017, 23, 4282.
      (j) Pan, S.; Li, H.; Huang. Y.; Xu, X. H.; Qing, F. L. Org. Lett. 2017, 19, 3247.
      (k) Li, H.; Liu, S.; Huang, Y.; Xu, X. H.; Qing, F. L. Chem. Commun. 2017, 53, 10136.

    8. [8]

      (a) Pooput, C.; Medebielle, M.; Dolbier, W. R. Org. Lett. 2004, 6, 301.
      (b) Pooput, C.; Dolbier, W. R.; Médebielle, M. J. Org. Chem. 2006, 71, 3564.
      (c) Kieltsch, I.; Eisenberger, P.; Togni, A. Angew. Chem. Int. Ed. 2007, 46, 754.

    9. [9]

      (a) Scherer, O. Angew. Chem. 1939, 52, 457.
      (b) Saint-Jalmes, L. J. Fluorine Chem. 2006, 127, 85.

    10. [10]

      For selected reviews on direct trifluoromethylthiolations, see:
      (a) Zhang, K.; Xu, X. H.; Qing, F. L. Chin. J. Org. Chem. 2015, 35, 556(in Chinese).
      (张柯, 徐修华, 卿凤翎, 有机化学, 2015, 35, 556.)
      (b) Zhang, P. P.; Lu, L.; Shen, Q. L. Acta Chim. Sinica 2017, 75, 744(in Chinese).
      (张盼盼, 吕龙, 沈其龙, 化学学报, 2017, 75, 744.)

    11. [11]

      For selected examples, see:
      (a) Toulgoat, F.; Alazet, S.; Billard, T. Eur. J. Org. Chem. 2014, 2014, 2415.
      (b) Zhang, M.; Weng, Z. Org. Lett. 2019, 21, 5838.
      (c) Teverovskiy, G.; Surry, D. S.; Buchwald, S. L. Angew. Chem. Int. Ed. 2011, 50, 7312.
      (d) Zhang, C.-P.; Vicic, D. J. Am. Chem. Soc. 2012, 134, 183.
      (e) Chen, C.; Xie, Y.; Chu, L.; Wang, R.-W.; Zhang, X.; Qing, F.-L. Angew. Chem. Int. Ed. 2012, 51, 2492.
      (f) Zhang, C.-P.; Vicic, D. Chem. Asian J. 2012, 7, 1756.
      (g) Chen, C.; Chu, L.; Qing, F.-L. J. Am. Chem. Soc. 2012, 134, 12454.
      (h) Tran, L. D.; Popov, I.; Daugulis, O. J. Am. Chem. Soc. 2012, 134, 18237.
      (i) Weng, Z.; He, W.; Chen, C.; Lee, R.; Tan, D.; Lai, Z.; Kong, D.; Yuan, Y.; Huang, K.-W. Angew. Chem. Int. Ed. 2013, 52, 1548.
      (j) Li, S.-G.; Zard, S. Org. Lett. 2013, 15, 5898.
      (k) Wang, X.; Yang, T.; Cheng, X.; Shen, Q. Angew. Chem. Int. Ed. 2013, 52, 12860.
      (l) Vinogradova, E. V.; Müller, P.; Buchwald, S. L. Angew. Chem. Int. Ed. 2014, 53, 3125.

    12. [12]

      (a) Adams, D. J.; Goddard, A.; Clark, J. H.; Macquarrie, D. J. Chem. Commun. 2000, 987.
      (b) Danoun, G.; Bayarmagnai, B.; Grünberg, M.; Gooßen, L. J. Chem. Sci. 2014, 5, 1312.
      (c) Bertoli, G.; Exner, B.; Evers, M. V.; Tschuilk, K.; Gooben, L. J. J. Fluorine Chem. 2018, 210, 132.
      (d) Zheng, C.; Liu, Y.; Hong, J.; Huag, S.; Zhang, W.; Yang, Y.; Fang, G.; Tetrahedron Lett. 2019, 60, 1404.

    13. [13]

      Liu, S.; Zeng, X.; Xu, B. Asian J. Org. Chem. 2019, 8, 1372.  doi: 10.1002/ajoc.201900358

    14. [14]

      Modak, A.; Pinter, E. N.; Cook, S. P. J. Am. Chem. Soc. 2019, 141, 18405.  doi: 10.1021/jacs.9b10316

    15. [15]

      (a) Sahani, R. L.; Ye, L. W.; Liu, R. S. Adv. Organomet. Chem. 2020, 73, 195.
      (b) Xia, Y.; Qiu, D.; Wang, J. B. Chem. Rev. 2017, 117, 13810.
      (c) Li, L.; Tan, T. D.; Zhang, Y. Q.; Liu, X.; Ye, L. W. Org. Biomol. Chem. 2017, 15, 8483.
      (d) Davies, P. W.; Garzón, M. Asian J. Org. Chem. 2015, 4, 694.
      (e) Davies, H. M. L.; Alford, J. S. Chem. Soc. Rev. 2014, 43, 5151.
      (f) Chattopadhyay, B.; Gevorgyan, V. Angew. Chem. Int. Ed. 2012, 51, 862.

    16. [16]

      For a recent review, see: Khanal, H. D.; Thombal, R. S.; Maezono, S. M. B.; Lee, Y. R. Adv. Synth. Catal. 2018, 360, 3185.

    17. [17]

      (a) Matheis, C.; Krause, T.; Bragoni, V.; Goossen, L. J. Chem.-Eur. J. 2016, 22, 12270.
      (b) Lefebvre, Q.; Fava, E.; Niko-laienko, P.; Rueping, M. Chem. Commun. 2014, 50, 6617.
      (c) Wang, X.; Zhou, Y.; Ji, G.; Wu, G.; Li, M.; Zhang, Y.; Wang, J. Eur. J. Org. Chem. 2014, 2014, 3093.
      (d) Hu, M.; Rong, J.; Miao, W.; Ni, C.; Han, Y.; Hu, J. Org. Lett. 2014, 16, 2030.

    18. [18]

      (a) Lubcke, M.; Yunan, W.; Szabo, K. J. Org. Lett. 2017, 19, 4548.
      (b) Mai, B. K.; Szabo, K. J.; Himo, F. Org. Lett. 2018, 20, 6646.

    19. [19]

      Lübcke, M.; Bezhan, D.; Szabó, K. J. Chem. Sci. 2019, 10, 5990.  doi: 10.1039/C9SC00829B

    20. [20]

      (a) Xing, Y. P.; Sheng, G. R.; Wang, J.; Lu, P.; Wang, Y. G. Org. Lett. 2014, 16, 1244.
      (b) Sheng, G. R.; Huang, K.; Chi, Z. H.; Ding, H. L.; Xing, Y. P.; Lu, P.; Wang, Y. G. Org. Lett. 2014, 16, 5096.

    21. [21]

      For selected examples, see:
      (a) Ma, F. H.; Qian, J.; Lu, P.; Wang, Y. G. Org. Biomol. Chem. 2018, 16, 439.
      (b) Wu, L.; Li, Z. M.; Lu, P.; Wang, Y. G. J. Org. Chem. 2018, 83, 13956.
      (c) Suleman, M.; Li, Z. M.; Lu, P.; Wang, Y. G. Eur. J. Org. chem. 2019, 27, 4447.
      (d) Sheng, G. R.; Ma, S. C.; Bai, S. L.; Mao, J. M.; Lu, P.; Wang, Y. G. Chem. Commun. 2018, 54, 1529.
      (e) Ding, H. L.; Bai, S. L.; Lu, P.; Wang, Y. G. Org. Lett. 2017, 19, 4604.
      (f) Zhou, Y. X.; Li, Z. M.; Ma, F. H.; Zhao, C.; Lu, P.; Wang, Y. G. J. Org. Chem. 2019, 84, 6655.
      (g) Lang, B.; Zhu, H.; Wang, C.; Lu, P.; Wang, Y. G. Org. Lett. 2017, 19, 1630.
      (h) Sheng, G. R.; Li, Z. M.; Mao, J. M.; Lu, P.; Wang, Y. G. J. Org. Chem. 2019, 84, 9561.
      (i) Sheng, G. R.; Huang, K.; Ma, S. C.; Qian, J.; Lu, P.; Wang, Y. G. Chem. Commun. 2015, 51, 11056.

    22. [22]

      CCDC 1997845(3p) contains supplementary crystallographic data for this paper.

  • 加载中
    1. [1]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    2. [2]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    3. [3]

      Rong-Nan YiWei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787

    4. [4]

      Yan LuoYan-Jiao LuMei-Mei PanYu-Feng LiangWei-Min ShiChun-Hua ChenCui LiangGui-Fa SuDong-Liang Mo . Rapidly diastereoselective assembly of ten-membered N-heterocycles between two 1,3-dipoles and their diversity to access fused N-heterocycles. Chinese Chemical Letters, 2025, 36(5): 110207-. doi: 10.1016/j.cclet.2024.110207

    5. [5]

      Xiao XiaoBiao ChenJia-Wei LiJun-Bo ZhengXu WangHang ZhaoFen-Er Chen . Nitrite-catalyzed economic and sustainable bromocyclization of tryptamines/tryptophols to access hexahydropyrrolo[2,3-b]indoles/tetrahydrofuroindolines in batch and flow. Chinese Chemical Letters, 2024, 35(7): 109280-. doi: 10.1016/j.cclet.2023.109280

    6. [6]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    7. [7]

      Ruike HuKangmin WangJunxiang LiuJingxian ZhangGuoliang YangLiqiu WanBijin Li . Extended π-conjugated systems by external ligand-assisted C−H olefination of heterocycles: Facile access to single-molecular white-light-emitting and NIR fluorescence materials. Chinese Chemical Letters, 2025, 36(4): 110113-. doi: 10.1016/j.cclet.2024.110113

    8. [8]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    9. [9]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    10. [10]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    11. [11]

      Lin Zhang Chaoran Li Thongthai Witoon Xingda An Le He . Nano-thermometry in photothermal catalysis. Chinese Journal of Structural Chemistry, 2025, 44(4): 100456-100456. doi: 10.1016/j.cjsc.2024.100456

    12. [12]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    13. [13]

      Wei SunAnjing LiaoLi LeiXu TangYa WangJian Wu . Research progress on piperidine-containing compounds as agrochemicals. Chinese Chemical Letters, 2025, 36(1): 109855-. doi: 10.1016/j.cclet.2024.109855

    14. [14]

      Xinlong HanHuiying ZengChao-Jun Li . Trifluoromethylative homo-coupling of carbonyl compounds. Chinese Chemical Letters, 2025, 36(1): 109817-. doi: 10.1016/j.cclet.2024.109817

    15. [15]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    16. [16]

      Jiaqi JiaKathiravan MurugesanChen ZhuHuifeng YueShao-Chi LeeMagnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866

    17. [17]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    18. [18]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    19. [19]

      Yin-Hang Chai Li-Long Dang . New structural breakthrough and topological transformation of homogeneous metalla[4]catenane compounds. Chinese Journal of Structural Chemistry, 2024, 43(10): 100322-100322. doi: 10.1016/j.cjsc.2024.100322

    20. [20]

      Shuai TangZian WangMengyi ZhuXinyun ZhaoXiaoyun HuHua Zhang . Synthesis of organoboron compounds via heterogeneous C–H and C–X borylation. Chinese Chemical Letters, 2025, 36(5): 110503-. doi: 10.1016/j.cclet.2024.110503

Metrics
  • PDF Downloads(11)
  • Abstract views(1235)
  • HTML views(158)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return