Citation: Tian Fei, Zhang Jian, Yang Wulin, Deng Weiping. Progress in Iridium-Catalyzed Asymmetric Allylic Substitution Reactions via Synergetic Catalysis[J]. Chinese Journal of Organic Chemistry, ;2020, 40(10): 3262-3278. doi: 10.6023/cjoc202005008 shu

Progress in Iridium-Catalyzed Asymmetric Allylic Substitution Reactions via Synergetic Catalysis

  • Corresponding author: Yang Wulin, yangwl@ecust.edu.cn Deng Weiping, weiping_deng@ecust.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 4 May 2020
    Revised Date: 23 May 2020
    Available Online: 29 May 2020

    Fund Project: the Fundamental Research Funds for the Central Universities 222201814048the Shanghai Sailing Program 18YF140560the National Natural Science Foundation of China 21772038the National Natural Science Foundation of China 21901072Project supported by the National Natural Science Foundation of China (Nos. 21772038, 21901072), the Fundamental Research Funds for the Central Universities (No. 222201814048) and the Shanghai Sailing Program (No. 18YF140560)

Figures(38)

  • Iridium-catalyzed asymmetric allylic substitution reaction has become one of the most important methods for the synthesis of chiral compounds due to its exceptional branched regioselectivity and excellent enantioselectivity. The scope of nucleophiles will be further expanded by synergetic catalysis system of iridium and other catalysts (organocatalysts, other transition metal catalysts). Besides, it is possible to improve the enantioselectivity of the reaction and even realize the stereodivergent synthesis of the products with multiple stereocenters. The progress in the field of catalytic asymmetric allylic substitutions through synergetic iridium and organocatalysis or other transition metal catalysis is summarized. These reactions are classified according to the types of catalysts (aminocatalyst, phase transfer catalyst, Brønsted acid, Lewis base, transition metal). Meanwhile, the mechanism of representative reactions, the existing problems and the prospects in this area are briefly described.
  • 加载中
    1. [1]

      Trost, B. M.; van Vranken, D. L. Chem. Rev. 1996, 96, 395.  doi: 10.1021/cr9409804

    2. [2]

      Trost, B. M. Chem. Pharm. Bull. 2002, 50, 1.  doi: 10.1248/cpb.50.1

    3. [3]

      Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921  doi: 10.1021/cr020027w

    4. [4]

      Milhau, L.; Guiry, P. J. Top. Organomet. Chem. 2011, 38, 95.

    5. [5]

      Takeuchi, R.; Kashio, M. J. Am. Chem. Soc. 1998, 120, 8647.  doi: 10.1021/ja981560p

    6. [6]

      Takeuchi, R.; Ue, N.; Tanabe, K.; Yamashita, K.; Shiga, N. J. Am. Chem. Soc. 2001, 123, 9525.  doi: 10.1021/ja0112036

    7. [7]

      Takeuchi, R. Synlett 2002, 1954.

    8. [8]

      Belda, O.; Moberg, C. Acc. Chem. Res. 2004, 37, 159.  doi: 10.1021/ar030239v

    9. [9]

      Trost, B. M. Org. Process Res. Dev. 2012, 16, 185.  doi: 10.1021/op200294r

    10. [10]

      Moberg, C. Org. React. 2014, 84, 1.

    11. [11]

      Trost, B. M.; Hachiya, I. J. Am. Chem. Soc. 1998, 120, 1104.  doi: 10.1021/ja973298a

    12. [12]

      Malkov, A. V.; Gouriou, L.; Lloyd-Jones, G. C.; Starý, I.; Langer, V.; Spoor, P.; Vinader, V.; Kočovský, P. Chem.-Eur. J. 2006, 12, 6910.  doi: 10.1002/chem.200501574

    13. [13]

      Trost, B. M.; Zhang, Y. J. Am. Chem. Soc. 2007, 129, 14548.  doi: 10.1021/ja0755717

    14. [14]

      Trost, B. M.; Zhang, Y. Chem.-Eur. J. 2010, 16, 296.  doi: 10.1002/chem.200902770

    15. [15]

      Trost, B. M.; Zhang, Y. Chem.-Eur. J. 2011, 17, 2916.  doi: 10.1002/chem.201002569

    16. [16]

      Ozkal, E.; Pericas, M. A. Adv. Synth. Catal. 2014, 356, 711.  doi: 10.1002/adsc.201300967

    17. [17]

      Lloyd-Jones, G. C.; Pfaltz, A. Angew. Chem., Int. Ed. Engl. 1995, 34, 462.  doi: 10.1002/anie.199504621

    18. [18]

      Matsushima, Y.; Onitsuka, K.; Kondo, T.; Mitsudo, T.; Takahashi, S. J. Am. Chem. Soc. 2001, 123, 10405.  doi: 10.1021/ja016334l

    19. [19]

      Onitsuka, K.; Matsushima, Y.; Takahashi, S. Organometallics 2005, 24, 6472.  doi: 10.1021/om050739n

    20. [20]

      Onitsuka, K.; Okuda, H.; Sasai, H. Angew. Chem., Int. Ed. 2008, 47, 1454.  doi: 10.1002/anie.200704457

    21. [21]

      Trost, B. M.; Rao, M.; Dieskau, A. P. J. Am. Chem. Soc. 2013, 135, 1869.

    22. [22]

      Kawatsura, M.; Uchida, K.; Terasaki, S.; Tsuji, H.; Minakawa, M.; Itoh, T. Org. Lett. 2014, 16, 1470.  doi: 10.1021/ol5002768

    23. [23]

      Kanbayashi, N.; Hosoda, K.; Kato, M.; Takii, K.; Okamura, T.; Onitsuka, K. Chem. Commun. 2015, 51, 10895.  doi: 10.1039/C5CC02414E

    24. [24]

      Leahy, D. K.; Evans, P. A. In Modern Rhodium-Catalyzed Organic Reactions, Ed.: Evans, P. A., John Wiley & Sons, Inc., New York, 2005; p. 191.

    25. [25]

      Evans, P. A.; Nelson, J. D. J. Am. Chem. Soc. 1998, 120, 5581.  doi: 10.1021/ja980030q

    26. [26]

      Hayashi, T.; Okada, A.; Suzuka, T.; Kawatsura, M. Org. Lett. 2003, 5, 1713.  doi: 10.1021/ol0343562

    27. [27]

      Kazmaier, U.; Stolz, D. Angew. Chem., Int. Ed. 2006, 45, 3072.  doi: 10.1002/anie.200600100

    28. [28]

      Sidera, M.; Fletcher, S. P. Nat. Chem. 2015, 7, 935.  doi: 10.1038/nchem.2360

    29. [29]

      Li, C.; Breit, B. Chem.-Eur. J. 2016, 22, 14655.  doi: 10.1002/chem.201603532

    30. [30]

      Parveen, S.; Li, C.; Hassan, A.; Breit, B. Org. Lett. 2017, 19, 2326.  doi: 10.1021/acs.orglett.7b00718

    31. [31]

      Didiuk, M. T.; Morken, J. P.; Hoveyda, A. H. J. Am. Chem. Soc. 1995, 117, 7273.  doi: 10.1021/ja00132a039

    32. [32]

      Chung, K.-G.; Miyake, Y.; Uemura, S. J. Chem. Soc., Perkin Trans. 1 2000, 15.

    33. [33]

      Kita, Y.; Kavthe, R. D.; Oda, H.; Mashima, K. Angew. Chem., Int. Ed. 2016, 55, 1098.  doi: 10.1002/anie.201508757

    34. [34]

      Langlois, J. B.; Alexakis, A. Organomet. Chem. 2011, 38, 235.

    35. [35]

      Malda, H.; van Zijl, A. W.; Arnold, L. A.; Feringa, B. L. Org. Lett. 2001, 3, 1169.  doi: 10.1021/ol0156289

    36. [36]

      Van Veldhuizen, J. J.; Campbell, J. E.; Giudici, R. E.; Hoveyda, A. H. J. Am. Chem. Soc. 2005, 127, 6877.  doi: 10.1021/ja050179j

    37. [37]

      Yoshikai, N.; Zhang, S.-L.; Nakamura, E. J. Am. Chem. Soc. 2008, 130, 12862.  doi: 10.1021/ja804682r

    38. [38]

      Selim, K. B.; Matsumoto, Y.; Yamada, K.; Tomioka, K. Angew. Chem., Int. Ed. 2009, 48, 8733.  doi: 10.1002/anie.200904676

    39. [39]

      Langlois, J.-B.; Alexakis, A. Adv. Synth. Catal. 2010, 352, 447.  doi: 10.1002/adsc.200900790

    40. [40]

      Shi, Y.; Jung, B.; Torker, S.; Hoveyda, A. H. J. Am. Chem. Soc. 2015, 137, 8948.  doi: 10.1021/jacs.5b05805

    41. [41]

      You, H.; Rideau, E.; Sidera, M.; Fletcher, S. P. Nature 2015, 517, 351.  doi: 10.1038/nature14089

    42. [42]

      Rideau, E.; You, H.; Sidera, M.; Claridge, T. D.W.; Fletcher, S. P. J. Am. Chem. Soc. 2017, 139, 5614.  doi: 10.1021/jacs.7b02440

    43. [43]

      Tsuji, J.; Takahashi, H.; Morikawa, M. Tetrahedron Lett. 1965, 4387.

    44. [44]

      Trost, B. M.; Strege, P. E. J. Am. Chem. Soc. 1977, 99, 1649.  doi: 10.1021/ja00447a064

    45. [45]

      Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 396.

    46. [46]

      Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921.  doi: 10.1021/cr020027w

    47. [47]

      Lu, Z.; Ma, S. Angew. Chem., Int. Ed. 2008, 47, 258.  doi: 10.1002/anie.200605113

    48. [48]

      Takeuchi, R.; Kashio, M. Angew. Chem., Int. Ed. 1997, 36, 263.  doi: 10.1002/anie.199702631

    49. [49]

      Janssen, J. P.; Helmchen, G. Tetrahedron Lett. 1997, 38, 8025.  doi: 10.1016/S0040-4039(97)10220-9

    50. [50]

      Hartwig, J. F.; Stanley, L. M. Acc. Chem. Res. 2010, 43, 1461.

    51. [51]

      Liu, W.-B.; Xia, J.-B.; You, S.-L. Top. Organomet. Chem. 2011, 38, 155.

    52. [52]

      Qu, J.; Helmchen, G. Acc. Chem. Res. 2017, 50, 2539.  doi: 10.1021/acs.accounts.7b00300

    53. [53]

      Cheng, Q.; Tu, H.; Zheng, C.; Qu J.; Helmchen, G.; You, S.-L. Chem. Rev. 2019, 119, 1855.  doi: 10.1021/acs.chemrev.8b00506

    54. [54]

      Deng, Y.; Yang, W.; Yang, X.; Yang, D. Chin. J. Org. Chem. 2017, 37, 3039(in Chinese).  doi: 10.6023/cjoc201604029

    55. [55]

      Shao, Z.; Zhang, H. Chem. Soc. Rev. 2009, 38, 2745.  doi: 10.1039/b901258n

    56. [56]

      Zhong, C.; Shi, X. Eur. J. Org. Chem. 2010, 2010, 2999.  doi: 10.1002/ejoc.201000004

    57. [57]

      Zhou, J. Chem. Asian J. 2010, 5, 422.  doi: 10.1002/asia.200900458

    58. [58]

      Allen, A. E.; MacMillan, D. W. C. Chem. Sci. 2012, 3, 633.  doi: 10.1039/c2sc00907b

    59. [59]

      Du, Z.; Shao, Z. Chem. Soc. Rev. 2013, 42, 1337.  doi: 10.1039/C2CS35258C

    60. [60]

      Chen, D.-F.; Han, Z.-Y.; Zhou, X.-L.; Gong, L.-Z. Acc. Chem. Res. 2014, 47, 2365.  doi: 10.1021/ar500101a

    61. [61]

      Inamdar, S. M.; Shinde, V.S.; Patil, N. T. Org. Biomol. Chem. 2015, 13, 8116.  doi: 10.1039/C5OB00986C

    62. [62]

      Afewerki, S.; Córdova, A. Chem. Rev. 2016, 116, 13512.  doi: 10.1021/acs.chemrev.6b00226

    63. [63]

      Zhang, M.-M.; Luo, Y.-L.; Lu, L.-Q.; Xiao, W.-J. Acta Chim. Sinica 2018, 76, 838(in Chinese).

    64. [64]

      Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Chem. Rev. 2007, 107, 5471.  doi: 10.1021/cr0684016

    65. [65]

      Melchiorre, P.; Marigo, M.; Carlone, A.; Bartoli, G. Angew. Chem., Int. Ed. 2008, 47, 6138.  doi: 10.1002/anie.200705523

    66. [66]

      Xu, L.-W.; Luo, J.; Lu, Y. Chem. Commun. 2009, 1807.

    67. [67]

      Gualandi, A.; Mengozzi, L.; Wilson, C. M.; Cozzi, P. G. Chem. Asian J. 2014, 9, 984.  doi: 10.1002/asia.201301549

    68. [68]

      Afewerki, S.; Córdova, A. Chem. Rev. 2016, 116, 13512.  doi: 10.1021/acs.chemrev.6b00226

    69. [69]

      Ibrahem, I.; Córdova, A. Angew. Chem., Int. Ed. 2006, 45, 1952.  doi: 10.1002/anie.200504021

    70. [70]

      Krautwald, S.; Sarlah, D.; Schafroth, M. A.; Carreira, E. M. Science 2013, 340, 1065.  doi: 10.1126/science.1237068

    71. [71]

      Krautwald, S.; Schafroth, M. A.; Sarlah, D.; Carreira, E. M. J. Am. Chem. Soc. 2014, 136, 3020.  doi: 10.1021/ja5003247

    72. [72]

      Schafroth, M. A.; Zuccarello, G.; Krautwald, S.; Sarlah, D.; Carreira, E. M. Angew. Chem., Int. Ed. 2014, 53, 13898.  doi: 10.1002/anie.201408380

    73. [73]

      Sandmeier, T.; Krautwald, S.; Zipfel, H. F.; Carreira, E. M. Angew. Chem., Int. Ed. 2015, 54, 14363.  doi: 10.1002/anie.201506933

    74. [74]

      For an example of water as a nucleophile in allylic substitution, see: Lüssem, B. J.; Gais, H.-J. J. Am. Chem. Soc. 2003, 125, 6066.

    75. [75]

      Sandmeier, T.; Goetzke, F. W.; Krautwald, S.; Carreira, E. M. J. Am. Chem. Soc. 2019, 141, 12212.  doi: 10.1021/jacs.9b05830

    76. [76]

      Sandmeier, T.; Carreira, E. M. Org. Lett. 2020, 22, 1135.  doi: 10.1021/acs.orglett.9b04658

    77. [77]

      Næsborg, L.; Halskov, K. S.; Tur, F.; Mønsted, S. M. N.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2015, 54, 10193.  doi: 10.1002/anie.201504749

    78. [78]

      Liang, X.; Zhang, T.-Y.; Meng, C.-Y.; Li, X.-D.; Wei, K.; Yang, Y.-R. Org. Lett. 2018, 20, 4575.  doi: 10.1021/acs.orglett.8b01861

    79. [79]

      Yao, J.-N.; Liang, X.; Wei, K.; Yang, Y.-R. Org. Lett. 2019, 21, 8485.  doi: 10.1021/acs.orglett.9b03319

    80. [80]

      Zhang, M.-M.; Wang, Y.-N.; Wang, B.-C.; Chen, X.-W.; Lu, L.-Q.; Xiao, W.-J. Nat. Commun. 2019, 10, 2716.  doi: 10.1038/s41467-019-10674-3

    81. [81]

      Liu, T.-Y.; Xie, M.; Chen, Y.-C. Chem. Soc. Rev. 2012, 41, 4101.  doi: 10.1039/c2cs35017c

    82. [82]

      Wei, Y.; Shi, M. Chem. Rev. 2013, 113, 6659.  doi: 10.1021/cr300192h

    83. [83]

      Pellissier, H. Tetrahedron 2017, 73, 2831.  doi: 10.1016/j.tet.2017.04.008

    84. [84]

      Chen, Z.-C.; Chen, Z.; Yang, Z.-H.; Guo, L.; Du, W.; Chen, Y.-C. Angew. Chem., Int. Ed. 2019, 58, 15021.  doi: 10.1002/anie.201907797

    85. [85]

      Chen, P.; Li, Y.; Chen, Z.-C.; Du, W.; Chen, Y.-C. Angew. Chem., Int. Ed. 2020, 59, 7083.  doi: 10.1002/anie.202000044

    86. [86]

      Shirakawa, S.; Maruoka, K. Angew. Chem., Int. Ed. 2013, 52, 4312.  doi: 10.1002/anie.201206835

    87. [87]

      Chen, G.; Deng, Y.; Gong, L.-Z; Mi, A.; Cui, X.; Jiang, Y.; Choi, M. C.; Chan, A. S. Tetrahedron: Asymmetry 2001, 21, 1567.

    88. [88]

      Nakoji, M.; Kanayama, T.; Okino, T.; Takemoto, Y. Org. Lett. 2001, 3, 3329.  doi: 10.1021/ol016567h

    89. [89]

      Kanayama, T.; Yoshida, K.; Miyabe, H.; Kimachi, H.; Takemoto, Y. J. Org. Chem. 2003, 68, 6197.  doi: 10.1021/jo034638f

    90. [90]

      Hamilton, J. Y.; Sarlah, D.; Carreira, E. M. J. Am. Chem. Soc. 2013, 135, 3, 994.

    91. [91]

      Hamilton, J. Y.; Sarlah, D.; Carreira, E. M. Angew. Chem., Int. Ed. 2013, 52, 7532.  doi: 10.1002/anie.201302731

    92. [92]

      Su, Y.-L; Li, Y.-H.; Chen, Y.-G.; Han, Z.-Y. Chem. Commun. 2017, 53, 1985.  doi: 10.1039/C6CC09654A

    93. [93]

      Jiang, X.; Hartwig, J. F. Angew. Chem., Int. Ed. 2017, 56, 8887.  doi: 10.1002/anie.201704354

    94. [94]

      Wei, L.; Xiao, L.; Wang, Z.-F.; Tao, H.-Y.; Wang, C.-J. Chin. J. Chem. 2020, 38, 82.  doi: 10.1002/cjoc.201900391

    95. [95]

      Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem., Int. Ed. 2004, 43, 1566.  doi: 10.1002/anie.200353240

    96. [96]

      Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004, 126, 5356.  doi: 10.1021/ja0491533

    97. [97]

      Shen, D.; Chen, Q.; Yan, P.; Zeng, X.; Zhong, G. Angew. Chem., Int. Ed. 2017, 56, 3242.  doi: 10.1002/anie.201609693

    98. [98]

      Jellerichs, B. G.; Kong, J. R.; Krische, M. J. J. Am. Chem. Soc. 2003, 125, 7758.  doi: 10.1021/ja0301469

    99. [99]

      Birman, V. B.; Ulffman, E. W.; Jiang, H.; Li, X.; Kilbane, C. J. J. Am. Chem. Soc. 2004, 126, 12226.  doi: 10.1021/ja0491477

    100. [100]

      Purohit, V. C.; Matla, A. S.; Romo, D. J. Am. Chem. Soc. 2008, 130, 10478.  doi: 10.1021/ja803579z

    101. [101]

      Schwarz, K. J.; Amos, J. L.; Klein, J. C.; Do, D. T.; Snaddon, T. N. J. Am. Chem. Soc. 2016, 138, 5214.  doi: 10.1021/jacs.6b01694

    102. [102]

      Jiang, X.; Beiger, J. J.; Hartwig, J. F. J. Am. Chem. Soc. 2017, 139, 87.  doi: 10.1021/jacs.6b11692

    103. [103]

      Ye, K.-Y.; Cheng, Q.; Zhuo, C.-X.; Dai, L.-X.; You, S.-L. Angew. Chem., Int. Ed. 2016, 55, 8113.  doi: 10.1002/anie.201603266

    104. [104]

      Singha, S.; Serrano, E.; Mondal, S.; Daniliuc, C. G.; Glorius, F. Nat. Catal. 2020, 3, 48.  doi: 10.1038/s41929-019-0387-3

    105. [105]

      Huo, X.; He, R.; Zhang, X.; Zhang, W. J. Am. Chem. Soc. 2016, 138, 11093.  doi: 10.1021/jacs.6b06156

    106. [106]

      He, R.; Liu, P.; Huo, X.; Zhang, W. Org. Lett. 2017, 19, 5513.  doi: 10.1021/acs.orglett.7b02577

    107. [107]

      Huo, X.; Zhang, J.; Fu, J.; He, R.; Zhang, W. J. Am. Chem. Soc. 2018, 140, 2080.  doi: 10.1021/jacs.8b00187

    108. [108]

      Wei, L.; Zhu, Q.; Xu, S.-M.; Chang, X.; Wang, C.-J. J. Am. Chem. Soc. 2018, 140, 1508.  doi: 10.1021/jacs.7b12174

    109. [109]

      Zhang, J.; Huo, X.; Li, B.; Chen, Z.; Zou, Y.; Sun, Z.; Zhang, W. Adv. Synth. Catal. 2019, 361, 1130.  doi: 10.1002/adsc.201801148

    110. [110]

      Jiang, X.; Boehm, P.; Hartwig, J. F. J. Am. Chem. Soc. 2018, 140, 1239.  doi: 10.1021/jacs.7b12824

    111. [111]

      Xu, S.-M.; Wei, L.; Shen, C.; Xiao, L.; Tao, H.-Y.; Wang, C.-J. Nat. Commun. 2019, 10, 5553.  doi: 10.1038/s41467-019-13529-z

    112. [112]

      Liu, W.-B.; Zheng, C.; Zhuo, C.-X.; Dai, L.-X.; You, S.-L. J. Am. Chem. Soc. 2012, 134, 4812.  doi: 10.1021/ja210923k

    113. [113]

      Wei, L.; Zhu, Q.; Xiao, L.; Tao, H.-Y.; Wang, C.-J. Nat. Commun. 2019, 10, 1594.  doi: 10.1038/s41467-019-09563-6

    114. [114]

      Zhan, M.; Li, R.-Z.; Mou, Z.-D.; Cao, C.-G.; Liu, J.; Chen, Y.-W.; Niu, D. ACS Catal. 2016, 6, 3381.  doi: 10.1021/acscatal.6b00719

  • 加载中
    1. [1]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    2. [2]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    3. [3]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    4. [4]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    5. [5]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    6. [6]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    7. [7]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    8. [8]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    11. [11]

      Honghong Zhang Zhen Wei Derek Hao Lin Jing Yuxi Liu Hongxing Dai Weiqin Wei Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073

    12. [12]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    13. [13]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    14. [14]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    15. [15]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    16. [16]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    17. [17]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    18. [18]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    19. [19]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    20. [20]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

Metrics
  • PDF Downloads(62)
  • Abstract views(2924)
  • HTML views(663)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return