Progress in Iridium-Catalyzed Asymmetric Allylic Substitution Reactions via Synergetic Catalysis
- Corresponding author: Yang Wulin, yangwl@ecust.edu.cn Deng Weiping, weiping_deng@ecust.edu.cn These authors contributed equally to this work.
Citation:
Tian Fei, Zhang Jian, Yang Wulin, Deng Weiping. Progress in Iridium-Catalyzed Asymmetric Allylic Substitution Reactions via Synergetic Catalysis[J]. Chinese Journal of Organic Chemistry,
;2020, 40(10): 3262-3278.
doi:
10.6023/cjoc202005008
Trost, B. M.; van Vranken, D. L. Chem. Rev. 1996, 96, 395.
doi: 10.1021/cr9409804
Trost, B. M. Chem. Pharm. Bull. 2002, 50, 1.
doi: 10.1248/cpb.50.1
Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921
doi: 10.1021/cr020027w
Milhau, L.; Guiry, P. J. Top. Organomet. Chem. 2011, 38, 95.
Takeuchi, R.; Kashio, M. J. Am. Chem. Soc. 1998, 120, 8647.
doi: 10.1021/ja981560p
Takeuchi, R.; Ue, N.; Tanabe, K.; Yamashita, K.; Shiga, N. J. Am. Chem. Soc. 2001, 123, 9525.
doi: 10.1021/ja0112036
Takeuchi, R. Synlett 2002, 1954.
Belda, O.; Moberg, C. Acc. Chem. Res. 2004, 37, 159.
doi: 10.1021/ar030239v
Trost, B. M. Org. Process Res. Dev. 2012, 16, 185.
doi: 10.1021/op200294r
Moberg, C. Org. React. 2014, 84, 1.
Trost, B. M.; Hachiya, I. J. Am. Chem. Soc. 1998, 120, 1104.
doi: 10.1021/ja973298a
Malkov, A. V.; Gouriou, L.; Lloyd-Jones, G. C.; Starý, I.; Langer, V.; Spoor, P.; Vinader, V.; Kočovský, P. Chem.-Eur. J. 2006, 12, 6910.
doi: 10.1002/chem.200501574
Trost, B. M.; Zhang, Y. J. Am. Chem. Soc. 2007, 129, 14548.
doi: 10.1021/ja0755717
Trost, B. M.; Zhang, Y. Chem.-Eur. J. 2010, 16, 296.
doi: 10.1002/chem.200902770
Trost, B. M.; Zhang, Y. Chem.-Eur. J. 2011, 17, 2916.
doi: 10.1002/chem.201002569
Ozkal, E.; Pericas, M. A. Adv. Synth. Catal. 2014, 356, 711.
doi: 10.1002/adsc.201300967
Lloyd-Jones, G. C.; Pfaltz, A. Angew. Chem., Int. Ed. Engl. 1995, 34, 462.
doi: 10.1002/anie.199504621
Matsushima, Y.; Onitsuka, K.; Kondo, T.; Mitsudo, T.; Takahashi, S. J. Am. Chem. Soc. 2001, 123, 10405.
doi: 10.1021/ja016334l
Onitsuka, K.; Matsushima, Y.; Takahashi, S. Organometallics 2005, 24, 6472.
doi: 10.1021/om050739n
Onitsuka, K.; Okuda, H.; Sasai, H. Angew. Chem., Int. Ed. 2008, 47, 1454.
doi: 10.1002/anie.200704457
Trost, B. M.; Rao, M.; Dieskau, A. P. J. Am. Chem. Soc. 2013, 135, 1869.
Kawatsura, M.; Uchida, K.; Terasaki, S.; Tsuji, H.; Minakawa, M.; Itoh, T. Org. Lett. 2014, 16, 1470.
doi: 10.1021/ol5002768
Kanbayashi, N.; Hosoda, K.; Kato, M.; Takii, K.; Okamura, T.; Onitsuka, K. Chem. Commun. 2015, 51, 10895.
doi: 10.1039/C5CC02414E
Leahy, D. K.; Evans, P. A. In Modern Rhodium-Catalyzed Organic Reactions, Ed.: Evans, P. A., John Wiley & Sons, Inc., New York, 2005; p. 191.
Evans, P. A.; Nelson, J. D. J. Am. Chem. Soc. 1998, 120, 5581.
doi: 10.1021/ja980030q
Hayashi, T.; Okada, A.; Suzuka, T.; Kawatsura, M. Org. Lett. 2003, 5, 1713.
doi: 10.1021/ol0343562
Kazmaier, U.; Stolz, D. Angew. Chem., Int. Ed. 2006, 45, 3072.
doi: 10.1002/anie.200600100
Sidera, M.; Fletcher, S. P. Nat. Chem. 2015, 7, 935.
doi: 10.1038/nchem.2360
Li, C.; Breit, B. Chem.-Eur. J. 2016, 22, 14655.
doi: 10.1002/chem.201603532
Parveen, S.; Li, C.; Hassan, A.; Breit, B. Org. Lett. 2017, 19, 2326.
doi: 10.1021/acs.orglett.7b00718
Didiuk, M. T.; Morken, J. P.; Hoveyda, A. H. J. Am. Chem. Soc. 1995, 117, 7273.
doi: 10.1021/ja00132a039
Chung, K.-G.; Miyake, Y.; Uemura, S. J. Chem. Soc., Perkin Trans. 1 2000, 15.
Kita, Y.; Kavthe, R. D.; Oda, H.; Mashima, K. Angew. Chem., Int. Ed. 2016, 55, 1098.
doi: 10.1002/anie.201508757
Langlois, J. B.; Alexakis, A. Organomet. Chem. 2011, 38, 235.
Malda, H.; van Zijl, A. W.; Arnold, L. A.; Feringa, B. L. Org. Lett. 2001, 3, 1169.
doi: 10.1021/ol0156289
Van Veldhuizen, J. J.; Campbell, J. E.; Giudici, R. E.; Hoveyda, A. H. J. Am. Chem. Soc. 2005, 127, 6877.
doi: 10.1021/ja050179j
Yoshikai, N.; Zhang, S.-L.; Nakamura, E. J. Am. Chem. Soc. 2008, 130, 12862.
doi: 10.1021/ja804682r
Selim, K. B.; Matsumoto, Y.; Yamada, K.; Tomioka, K. Angew. Chem., Int. Ed. 2009, 48, 8733.
doi: 10.1002/anie.200904676
Langlois, J.-B.; Alexakis, A. Adv. Synth. Catal. 2010, 352, 447.
doi: 10.1002/adsc.200900790
Shi, Y.; Jung, B.; Torker, S.; Hoveyda, A. H. J. Am. Chem. Soc. 2015, 137, 8948.
doi: 10.1021/jacs.5b05805
You, H.; Rideau, E.; Sidera, M.; Fletcher, S. P. Nature 2015, 517, 351.
doi: 10.1038/nature14089
Rideau, E.; You, H.; Sidera, M.; Claridge, T. D.W.; Fletcher, S. P. J. Am. Chem. Soc. 2017, 139, 5614.
doi: 10.1021/jacs.7b02440
Tsuji, J.; Takahashi, H.; Morikawa, M. Tetrahedron Lett. 1965, 4387.
Trost, B. M.; Strege, P. E. J. Am. Chem. Soc. 1977, 99, 1649.
doi: 10.1021/ja00447a064
Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 396.
Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921.
doi: 10.1021/cr020027w
Lu, Z.; Ma, S. Angew. Chem., Int. Ed. 2008, 47, 258.
doi: 10.1002/anie.200605113
Takeuchi, R.; Kashio, M. Angew. Chem., Int. Ed. 1997, 36, 263.
doi: 10.1002/anie.199702631
Janssen, J. P.; Helmchen, G. Tetrahedron Lett. 1997, 38, 8025.
doi: 10.1016/S0040-4039(97)10220-9
Hartwig, J. F.; Stanley, L. M. Acc. Chem. Res. 2010, 43, 1461.
Liu, W.-B.; Xia, J.-B.; You, S.-L. Top. Organomet. Chem. 2011, 38, 155.
Qu, J.; Helmchen, G. Acc. Chem. Res. 2017, 50, 2539.
doi: 10.1021/acs.accounts.7b00300
Cheng, Q.; Tu, H.; Zheng, C.; Qu J.; Helmchen, G.; You, S.-L. Chem. Rev. 2019, 119, 1855.
doi: 10.1021/acs.chemrev.8b00506
Deng, Y.; Yang, W.; Yang, X.; Yang, D. Chin. J. Org. Chem. 2017, 37, 3039(in Chinese).
doi: 10.6023/cjoc201604029
Shao, Z.; Zhang, H. Chem. Soc. Rev. 2009, 38, 2745.
doi: 10.1039/b901258n
Zhong, C.; Shi, X. Eur. J. Org. Chem. 2010, 2010, 2999.
doi: 10.1002/ejoc.201000004
Zhou, J. Chem. Asian J. 2010, 5, 422.
doi: 10.1002/asia.200900458
Allen, A. E.; MacMillan, D. W. C. Chem. Sci. 2012, 3, 633.
doi: 10.1039/c2sc00907b
Du, Z.; Shao, Z. Chem. Soc. Rev. 2013, 42, 1337.
doi: 10.1039/C2CS35258C
Chen, D.-F.; Han, Z.-Y.; Zhou, X.-L.; Gong, L.-Z. Acc. Chem. Res. 2014, 47, 2365.
doi: 10.1021/ar500101a
Inamdar, S. M.; Shinde, V.S.; Patil, N. T. Org. Biomol. Chem. 2015, 13, 8116.
doi: 10.1039/C5OB00986C
Afewerki, S.; Córdova, A. Chem. Rev. 2016, 116, 13512.
doi: 10.1021/acs.chemrev.6b00226
Zhang, M.-M.; Luo, Y.-L.; Lu, L.-Q.; Xiao, W.-J. Acta Chim. Sinica 2018, 76, 838(in Chinese).
Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Chem. Rev. 2007, 107, 5471.
doi: 10.1021/cr0684016
Melchiorre, P.; Marigo, M.; Carlone, A.; Bartoli, G. Angew. Chem., Int. Ed. 2008, 47, 6138.
doi: 10.1002/anie.200705523
Xu, L.-W.; Luo, J.; Lu, Y. Chem. Commun. 2009, 1807.
Gualandi, A.; Mengozzi, L.; Wilson, C. M.; Cozzi, P. G. Chem. Asian J. 2014, 9, 984.
doi: 10.1002/asia.201301549
Afewerki, S.; Córdova, A. Chem. Rev. 2016, 116, 13512.
doi: 10.1021/acs.chemrev.6b00226
Ibrahem, I.; Córdova, A. Angew. Chem., Int. Ed. 2006, 45, 1952.
doi: 10.1002/anie.200504021
Krautwald, S.; Sarlah, D.; Schafroth, M. A.; Carreira, E. M. Science 2013, 340, 1065.
doi: 10.1126/science.1237068
Krautwald, S.; Schafroth, M. A.; Sarlah, D.; Carreira, E. M. J. Am. Chem. Soc. 2014, 136, 3020.
doi: 10.1021/ja5003247
Schafroth, M. A.; Zuccarello, G.; Krautwald, S.; Sarlah, D.; Carreira, E. M. Angew. Chem., Int. Ed. 2014, 53, 13898.
doi: 10.1002/anie.201408380
Sandmeier, T.; Krautwald, S.; Zipfel, H. F.; Carreira, E. M. Angew. Chem., Int. Ed. 2015, 54, 14363.
doi: 10.1002/anie.201506933
For an example of water as a nucleophile in allylic substitution, see: Lüssem, B. J.; Gais, H.-J. J. Am. Chem. Soc. 2003, 125, 6066.
Sandmeier, T.; Goetzke, F. W.; Krautwald, S.; Carreira, E. M. J. Am. Chem. Soc. 2019, 141, 12212.
doi: 10.1021/jacs.9b05830
Sandmeier, T.; Carreira, E. M. Org. Lett. 2020, 22, 1135.
doi: 10.1021/acs.orglett.9b04658
Næsborg, L.; Halskov, K. S.; Tur, F.; Mønsted, S. M. N.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2015, 54, 10193.
doi: 10.1002/anie.201504749
Liang, X.; Zhang, T.-Y.; Meng, C.-Y.; Li, X.-D.; Wei, K.; Yang, Y.-R. Org. Lett. 2018, 20, 4575.
doi: 10.1021/acs.orglett.8b01861
Yao, J.-N.; Liang, X.; Wei, K.; Yang, Y.-R. Org. Lett. 2019, 21, 8485.
doi: 10.1021/acs.orglett.9b03319
Zhang, M.-M.; Wang, Y.-N.; Wang, B.-C.; Chen, X.-W.; Lu, L.-Q.; Xiao, W.-J. Nat. Commun. 2019, 10, 2716.
doi: 10.1038/s41467-019-10674-3
Liu, T.-Y.; Xie, M.; Chen, Y.-C. Chem. Soc. Rev. 2012, 41, 4101.
doi: 10.1039/c2cs35017c
Wei, Y.; Shi, M. Chem. Rev. 2013, 113, 6659.
doi: 10.1021/cr300192h
Pellissier, H. Tetrahedron 2017, 73, 2831.
doi: 10.1016/j.tet.2017.04.008
Chen, Z.-C.; Chen, Z.; Yang, Z.-H.; Guo, L.; Du, W.; Chen, Y.-C. Angew. Chem., Int. Ed. 2019, 58, 15021.
doi: 10.1002/anie.201907797
Chen, P.; Li, Y.; Chen, Z.-C.; Du, W.; Chen, Y.-C. Angew. Chem., Int. Ed. 2020, 59, 7083.
doi: 10.1002/anie.202000044
Shirakawa, S.; Maruoka, K. Angew. Chem., Int. Ed. 2013, 52, 4312.
doi: 10.1002/anie.201206835
Chen, G.; Deng, Y.; Gong, L.-Z; Mi, A.; Cui, X.; Jiang, Y.; Choi, M. C.; Chan, A. S. Tetrahedron: Asymmetry 2001, 21, 1567.
Nakoji, M.; Kanayama, T.; Okino, T.; Takemoto, Y. Org. Lett. 2001, 3, 3329.
doi: 10.1021/ol016567h
Kanayama, T.; Yoshida, K.; Miyabe, H.; Kimachi, H.; Takemoto, Y. J. Org. Chem. 2003, 68, 6197.
doi: 10.1021/jo034638f
Hamilton, J. Y.; Sarlah, D.; Carreira, E. M. J. Am. Chem. Soc. 2013, 135, 3, 994.
Hamilton, J. Y.; Sarlah, D.; Carreira, E. M. Angew. Chem., Int. Ed. 2013, 52, 7532.
doi: 10.1002/anie.201302731
Su, Y.-L; Li, Y.-H.; Chen, Y.-G.; Han, Z.-Y. Chem. Commun. 2017, 53, 1985.
doi: 10.1039/C6CC09654A
Jiang, X.; Hartwig, J. F. Angew. Chem., Int. Ed. 2017, 56, 8887.
doi: 10.1002/anie.201704354
Wei, L.; Xiao, L.; Wang, Z.-F.; Tao, H.-Y.; Wang, C.-J. Chin. J. Chem. 2020, 38, 82.
doi: 10.1002/cjoc.201900391
Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem., Int. Ed. 2004, 43, 1566.
doi: 10.1002/anie.200353240
Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004, 126, 5356.
doi: 10.1021/ja0491533
Shen, D.; Chen, Q.; Yan, P.; Zeng, X.; Zhong, G. Angew. Chem., Int. Ed. 2017, 56, 3242.
doi: 10.1002/anie.201609693
Jellerichs, B. G.; Kong, J. R.; Krische, M. J. J. Am. Chem. Soc. 2003, 125, 7758.
doi: 10.1021/ja0301469
Birman, V. B.; Ulffman, E. W.; Jiang, H.; Li, X.; Kilbane, C. J. J. Am. Chem. Soc. 2004, 126, 12226.
doi: 10.1021/ja0491477
Purohit, V. C.; Matla, A. S.; Romo, D. J. Am. Chem. Soc. 2008, 130, 10478.
doi: 10.1021/ja803579z
Schwarz, K. J.; Amos, J. L.; Klein, J. C.; Do, D. T.; Snaddon, T. N. J. Am. Chem. Soc. 2016, 138, 5214.
doi: 10.1021/jacs.6b01694
Jiang, X.; Beiger, J. J.; Hartwig, J. F. J. Am. Chem. Soc. 2017, 139, 87.
doi: 10.1021/jacs.6b11692
Ye, K.-Y.; Cheng, Q.; Zhuo, C.-X.; Dai, L.-X.; You, S.-L. Angew. Chem., Int. Ed. 2016, 55, 8113.
doi: 10.1002/anie.201603266
Singha, S.; Serrano, E.; Mondal, S.; Daniliuc, C. G.; Glorius, F. Nat. Catal. 2020, 3, 48.
doi: 10.1038/s41929-019-0387-3
Huo, X.; He, R.; Zhang, X.; Zhang, W. J. Am. Chem. Soc. 2016, 138, 11093.
doi: 10.1021/jacs.6b06156
He, R.; Liu, P.; Huo, X.; Zhang, W. Org. Lett. 2017, 19, 5513.
doi: 10.1021/acs.orglett.7b02577
Huo, X.; Zhang, J.; Fu, J.; He, R.; Zhang, W. J. Am. Chem. Soc. 2018, 140, 2080.
doi: 10.1021/jacs.8b00187
Wei, L.; Zhu, Q.; Xu, S.-M.; Chang, X.; Wang, C.-J. J. Am. Chem. Soc. 2018, 140, 1508.
doi: 10.1021/jacs.7b12174
Zhang, J.; Huo, X.; Li, B.; Chen, Z.; Zou, Y.; Sun, Z.; Zhang, W. Adv. Synth. Catal. 2019, 361, 1130.
doi: 10.1002/adsc.201801148
Jiang, X.; Boehm, P.; Hartwig, J. F. J. Am. Chem. Soc. 2018, 140, 1239.
doi: 10.1021/jacs.7b12824
Xu, S.-M.; Wei, L.; Shen, C.; Xiao, L.; Tao, H.-Y.; Wang, C.-J. Nat. Commun. 2019, 10, 5553.
doi: 10.1038/s41467-019-13529-z
Liu, W.-B.; Zheng, C.; Zhuo, C.-X.; Dai, L.-X.; You, S.-L. J. Am. Chem. Soc. 2012, 134, 4812.
doi: 10.1021/ja210923k
Wei, L.; Zhu, Q.; Xiao, L.; Tao, H.-Y.; Wang, C.-J. Nat. Commun. 2019, 10, 1594.
doi: 10.1038/s41467-019-09563-6
Zhan, M.; Li, R.-Z.; Mou, Z.-D.; Cao, C.-G.; Liu, J.; Chen, Y.-W.; Niu, D. ACS Catal. 2016, 6, 3381.
doi: 10.1021/acscatal.6b00719
Hong Lu , Yidie Zhai , Xingxing Cheng , Yujia Gao , Qing Wei , Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074
Ke QIAO , Yanlin LI , Shengli HUANG , Guoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Tingyu Zhu , Hui Zhang , Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
Honghong Zhang , Zhen Wei , Derek Hao , Lin Jing , Yuxi Liu , Hongxing Dai , Weiqin Wei , Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095