Citation: Yuan Kangning, Zhao Yuying, Chang Honghong, Tian Jun, Gao Wenchao. Recent Advances in AlCl3-Promoted Organic Reactions[J]. Chinese Journal of Organic Chemistry, ;2020, 40(9): 2607-2625. doi: 10.6023/cjoc202004042 shu

Recent Advances in AlCl3-Promoted Organic Reactions

  • Corresponding author: Gao Wenchao, gaowenchao@tyut.edu.cn
  • Received Date: 26 April 2020
    Revised Date: 16 May 2020
    Available Online: 29 May 2020

    Fund Project: the Natural Science Foundation of Shanxi Province 201901D211052the Research Project Supported by Shanxi Scholarship Council of China 2020-053the Research Project Supported by Shanxi Scholarship Council of China HGKY2019029Project supported by the National Natural Science Foundation of China (No. 21901179), the Key Research and Development Program of Shanxi Province (International Cooperation) (No. 201803D421093), the Natural Science Foundation of Shanxi Province (No. 201901D211052) and the Research Project Supported by Shanxi Scholarship Council of China (Nos. HGKY2019029, 2020-053)the National Natural Science Foundation of China 21901179the Key Research and Development Program of Shanxi Province (International Cooperation) 201803D421093

Figures(36)

  • As a representative hard Lewis acid, aluminum trichloride (AlCl3) has attracted more and more attention in the past decades. The reactions promoted via the activation of halogens, oxygen, nitrogen, sulfur compounds and π-bonds with AlCl3 are systematically reviewed, and some recent progress in last ten years is updated as well. Moreover, the new application fields of AlCl3 are prospected.
  • 加载中
    1. [1]

      Chen, Z.; Qiu, X. L.; Yan, W.; Yang, H. N.; Ji, S. C.; Chen, M. H. Adv. Earth Sci. 2003, 18, 545 (in Chinese).

    2. [2]

      Ashkenazi, D. Technol. Forecast. Soc. Change 2019, 143, 101.  doi: 10.1016/j.techfore.2019.03.011

    3. [3]

      (a) Curtiss, L. A. Int. J. Quantum Chem. 1978, 14, 709.
      (b) Bigelow, M. J. J. Chem. Educ. 1969, 46, 495.
      (c) Aarset, K.; Shen, Q.; Thomassen, H.; Richardson, A. D.; Hedberg, K. J. Phys. Chem. A 1999, 103, 1644.

    4. [4]

      Pearson, R. G. J. Am. Chem. Soc. 1963, 85, 3533.  doi: 10.1021/ja00905a001

    5. [5]

      Yamamoto, Y. J. Org. Chem. 2007, 72, 7817.  doi: 10.1021/jo070579k

    6. [6]

      Zhao, Y.; Yang, Z.; Tang, L. Chin. J. Org. Chem. 2003, 23, 1219 (in Chinese).
       

    7. [7]

      Kürti, L.; Czakó, B. Strategic Applications of Named Reactions in Organic Synthesis, Elsevier Academic Press, San Diego, CA, 2005.

    8. [8]

      Chong, H. S.; Chen, Y. W. Org. Lett. 2013, 15, 5912.  doi: 10.1021/ol4013537

    9. [9]

      Rossiter, B. E.; Swingle, N. M. Chem. Rev. 1992, 92, 771.  doi: 10.1021/cr00013a002

    10. [10]

      Swaminathan, S.; Narayanan, K. V. Chem. Rev. 1971, 71, 429.  doi: 10.1021/cr60273a001

    11. [11]

      Beak, P.; Berger, K. R. J. Am. Chem. Soc. 1980, 102, 3848.  doi: 10.1021/ja00531a029

    12. [12]

      Shono, T.; Nishiguchi, I.; Sasaki, M.; Ikeda, H.; Kurita, M. J. Org. Chem. 1983, 48, 2503.  doi: 10.1021/jo00163a015

    13. [13]

      Hoffmann, H. M. R.; Tsushima, T. J. Am. Chem. Soc. 1977, 99, 6008.  doi: 10.1021/ja00460a028

    14. [14]

      Tanaka, S.; Kunisawa, T.; Yoshii, Y.; Hattori, T. Org. Lett. 2019, 21, 8509.  doi: 10.1021/acs.orglett.9b02688

    15. [15]

      Koo, H.; Kim, H. Y.; Oh, K. Org. Chem. Front. 2019, 6, 1868.  doi: 10.1039/C9QO00217K

    16. [16]

      Xu, S. B.; Li, C. J.; Jia, X. S.; Li, J. J. Org. Chem. 2014, 79, 11161.  doi: 10.1021/jo502209f

    17. [17]

      Devi, N. S.; Singh, S. J.; Devi, L. R.; Singh, O. M. Tetrahedron Lett. 2013, 54, 183.  doi: 10.1016/j.tetlet.2012.10.126

    18. [18]

      Chen, L.; Teng, W.; Geng, X. L.; Zhu, Y. F.; Guan, Y. H.; Fan, X. H. Appl. Organomet. Chem. 2017, 31, 3863.  doi: 10.1002/aoc.3863

    19. [19]

      Xu, X. M.; Lei, C. H.; Tong, S.; Zhu, J. P.; Wang, M. X. Org. Chem. Front. 2018, 5, 3138.  doi: 10.1039/C8QO00839F

    20. [20]

      Aleksić, M.; Bertoša, B.; Nhili, R.; Uzelac, L.; Jarak, I.; Depauw, S.; David-Cordonnier, M. H.; Kralj, M.; Tomić, S.; Karminski-Zamola, G. J. Med. Chem. 2012, 55, 5044.  doi: 10.1021/jm300505h

    21. [21]

      Dénès, F.; Pichowicz, M.; Povie, G.; Renaud, P. Chem. Rev. 2014, 114, 2587.  doi: 10.1021/cr400441m

    22. [22]

      Paul, S.; Shrestha, R.; Edison, T. N. J. I.; Lee, Y. R.; Kim, S. H. Adv. Synth. Catal. 2016, 358, 3050.  doi: 10.1002/adsc.201600429

    23. [23]

      Wang, Z.; Xue, L.; He, Y.; Weng, L.; Fang, L. J. Org. Chem. 2014, 79, 9628.  doi: 10.1021/jo501753p

    24. [24]

      Gao, W. C.; Liu, T.; Cheng, Y. F.; Chang, H. H.; Li, X.; Zhou, R.; Wei, W. L.; Qiao, Y. J. Org. Chem. 2017, 82, 13459.  doi: 10.1021/acs.joc.7b02498

    25. [25]

      Gao, W. C.; Cheng, Y. F.; Chang, H. H.; Li, X.; Wei, W. L.; Yang, P. J. Org. Chem. 2019, 84, 4312.  doi: 10.1021/acs.joc.9b00256

    26. [26]

      Yu, X. Z.; Shang, Y. Z.; Cheng, Y. F.; Tian, J.; Niu, Y.; Gao, W. C. Org. Biomol. Chem. 2020, 18, 1806.  doi: 10.1039/D0OB00050G

    27. [27]

      Zhang, L.; Li, X. J.; Wang, Z. W.; Zhao, J. W.; Wang, J. J.; Han, J. W.; Zhu, S. Z. Tetrahedron 2013, 69, 7975.  doi: 10.1016/j.tet.2013.07.004

    28. [28]

      Wang, X. N.; Krenske, E. H.; Johnston, R. C.; Houk, K. N.; Hsung, R. P. J. Am. Chem. Soc. 2015, 137, 5596.  doi: 10.1021/jacs.5b02561

    29. [29]

      Zhu, Y. Y.; Zhang, M. L.; Li, T.; Song, X. X. ChemistrySelect 2019, 4, 10838.  doi: 10.1002/slct.201903330

    30. [30]

      Cao, D. P.; Zhang, K. P.; An, R.; Xu, H.; Hao, S.; Yang, X. G.; Hou, Z.; Guo, C. Org. Lett. 2019, 21, 8948.  doi: 10.1021/acs.orglett.9b03260

    31. [31]

      Tskhovrebov, A. G.; Naested, L. C. E.; Solari, E.; Scopelliti, R.; Severin, K. Angew. Chem., Int. Ed. 2015, 54, 1289.  doi: 10.1002/anie.201410067

    32. [32]

      Zhu, Z. Q.; Bao, P.; Wang, T. T.; Huang, Z. Z. Chin. J. Chem. 2014, 32, 1176.  doi: 10.1002/cjoc.201400516

    33. [33]

      (a) Zhou, J. H.; Jiang, B.; Meng, F. F.; Xu, Y. H.; Loh, T. P. Org. Lett. 2015, 17, 4432.
      (b) Yepes, D.; Pérez, P.; Jaquea, P.; Fernández, I. Org. Chem. Front. 2017, 4, 1390.

    34. [34]

      Masson, G; Lalli, C.; Benohoud, M.; Dagousset, G. Chem. Soc. Rev. 2013, 42, 902.  doi: 10.1039/C2CS35370A

    35. [35]

      Jian, W. J.; Qian, B.; Bao, H. L.; Li, D. L. Tetrahedron 2017, 73, 4039.  doi: 10.1016/j.tet.2016.10.049

    36. [36]

      Yang, G.; Shen, Y.; Li, K.; Sun, Y.; Hua, Y. J. Org. Chem. 2011, 76, 229.  doi: 10.1021/jo1020773

    37. [37]

      Yang, G.; Sun, Y.; Shen, Y.; Chai, Z.; Zhou, S.; Chu, J.; Chai, J. J. Org. Chem. 2013, 78, 5393.  doi: 10.1021/jo400554a

    38. [38]

      Shen, Y.; Chai, J.; Yang, G.; Chen, W.; Chai, Z. J. Org. Chem. 2018, 83, 12549.  doi: 10.1021/acs.joc.8b01798

    39. [39]

      Yang, G.; Wang, T.; Chai, J.; Chai, Z. Eur. J. Org. Chem. 2015, 2015, 1040.  doi: 10.1002/ejoc.201403325

    40. [40]

      Augustin, A. U.; Sensse, M.; Jones, P. G.; Werz, D. B. Angew. Chem., Int. Ed. 2017, 56, 14293.  doi: 10.1002/anie.201708346

    41. [41]

      Ge, J. J.; Yao, C. Z.; Wang, M. M.; Zheng, H. X.; Kang, Y. B.; Li, Y. D. Org. Lett. 2016, 18, 228.  doi: 10.1021/acs.orglett.5b03367

    42. [42]

      Wang, Z.; Yuan, Z. H.; Han, X. Y.; Weng, Z. Q. Adv. Synth. Catal. 2018, 360, 2078.

    43. [43]

      (a) Beck, B.; Magnin-Lachaux, M. Herdtweck, E.; Dömling, A. Org. Lett. 2001, 3, 2875.
      (b) Kaim, L. E.; Gizolme, M.; Grimaud, L. Org. Lett. 2006, 8, 5021.

    44. [44]

      Lyu, L. Y.; Xie, H.; Mu, H. X.; He, Q. J.; Bian, Z. X.; Wang, J. Org. Chem. Front. 2015, 2, 815.  doi: 10.1039/C5QO00106D

    45. [45]

      Hu, Q. Q.; Liu, Y.; Deng, X. C.; Li, Y. J.; Chen, Y. F. Adv. Synth. Catal. 2016, 358, 1689.  doi: 10.1002/adsc.201600098

    46. [46]

      Dimitrov, P.; Emert, J.; Faust, R. Macromolecules 2012, 45, 3318.  doi: 10.1021/ma3003856

    47. [47]

      Chen, J.; Mao, J.-C.; He, Y.; Shi, D. Q.; Zou, B. Y.; Zhang, G. Q. Tetrahedron 2015, 71, 9496.  doi: 10.1016/j.tet.2015.10.030

    48. [48]

      Zhai, J. J.; Yao, Z. G.; Xu, F. Chin. J. Org. Chem. 2014, 34, 1639 (in Chinese).
       

    49. [49]

      Liu, G. Q.; Cui, B.; Xu, R.; Li, Y. M. J. Org. Chem. 2016, 81, 5144.  doi: 10.1021/acs.joc.6b00725

    50. [50]

      Kumar, K. S.; Meesa, S. R.; Rajeshama, B.; Bhaskera, B.; Ashfaq, M. A.; Khan, A. A.; Rao, S. S.; Pal, M. Bioorg. Med. Chem. 2012, 20, 1711.  doi: 10.1016/j.bmc.2012.01.012

    51. [51]

      Nakhi, A.; Archana, S.; Seerapu, G. P. K.; Chennubhotla, K. S.; Kumar, K. L.; Kulkarni, P.; Haldar, D.; Pal, M. Chem. Commun. 2013, 49, 6268.  doi: 10.1039/c3cc42840k

    52. [52]

      Shiro, D.; Fujiwara, S.; Tsuda, S.; Iwasaki, T.; Kuniyasu, H.; Kambe, N. Tetrahedron Lett. 2015, 56, 1531.  doi: 10.1016/j.tetlet.2015.01.096

    53. [53]

      Hachiya, I.; Nakamura, K.; Hara, M.; Sato, K.; Shimizu, M. J. Org. Chem. 2019, 84, 14770.  doi: 10.1021/acs.joc.9b02364

    54. [54]

      Tadeusz. S.; Jagodziski, T. S. Chem. Rev. 2003, 103, 197.  doi: 10.1021/cr0200015

    55. [55]

      Alla, S. K.; Sadhu, P.; Punniyamurthy, T. J. Org. Chem. 2014, 79, 7502.  doi: 10.1021/jo501216h

    56. [56]

      Kumar, K.; Konar, D.; Goyal, S.; Gangar, M.; Chouhan, M.; Rawal, R. K.; Nair, V. A. ChemistrySelect 2016, 1, 3228.  doi: 10.1002/slct.201600601

    57. [57]

      Liu, X.; Zhang, S. B.; Dong, Z. B. Eur. J. Org. Chem. 2018, 39, 5406.

    58. [58]

      Yamamoto, Y. J. Org. Chem. 2007, 72, 7817.  doi: 10.1021/jo070579k

    59. [59]

      Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2017, 139, 6074.  doi: 10.1021/jacs.7b02553

    60. [60]

      Nikonov, G. I. ACS Catal. 2017, 7, 7257.  doi: 10.1021/acscatal.7b02460

    61. [61]

      Kato, N.; Tamura, Y.; Kashiwabara, T.; Sanji, T.; Tanaka, M. Organometallics 2010, 29, 5274.  doi: 10.1021/om100376d

  • 加载中
    1. [1]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    2. [2]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    3. [3]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    4. [4]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    5. [5]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    6. [6]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    7. [7]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    8. [8]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    9. [9]

      Chengpeng Liu Yinxia Fu . Design and Practice of Ideological and Political Education for the Public Elective Course “Life Chemistry Experiment” in Universities. University Chemistry, 2024, 39(10): 242-248. doi: 10.12461/PKU.DXHX202404064

    10. [10]

      Fa Wang Yu Chen Hui Chao . Ruthenium(II) Complexes as Photoactivated Chemo-Prodrugs for Hypoxic Tumor Therapy. University Chemistry, 2025, 40(7): 200-212. doi: 10.12461/PKU.DXHX202410024

    11. [11]

      Xue-Peng Zhang Yuchi Long Yushu Pan Jiding Wang Baoyu Bai Rui Ding . 定量构效关系方法学习探索:以钴卟啉活化氧气为例. University Chemistry, 2025, 40(8): 345-359. doi: 10.12461/PKU.DXHX202410107

    12. [12]

      Xiaohang JINQi LIUJianping LANG . Room‑temperature solid‑state synthesis, structure, and third‑order nonlinear optical properties of phosphine‑ligand‑protected silver thiolate clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1505-1512. doi: 10.11862/CJIC.20250125

    13. [13]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    14. [14]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    15. [15]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    16. [16]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    17. [17]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    18. [18]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    19. [19]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    20. [20]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

Metrics
  • PDF Downloads(195)
  • Abstract views(7294)
  • HTML views(2949)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return