Citation: Wu Lizuo, Zhang Fengyuan, Zhang Zhentao, Shang Lei, Liu Yu. Ming-Phos/Copper(I)-Catalyzed Asymmetric Intermolecular[3+2] Cycloaddition of Azomethine Ylides with Trifluoromethyl Enones[J]. Chinese Journal of Organic Chemistry, ;2020, 40(8): 2460-2467. doi: 10.6023/cjoc202004038 shu

Ming-Phos/Copper(I)-Catalyzed Asymmetric Intermolecular[3+2] Cycloaddition of Azomethine Ylides with Trifluoromethyl Enones

  • Corresponding author: Shang Lei, shanglei@ccut.edu.cn Liu Yu, yuliu@ccut.edu.cn
  • Received Date: 25 April 2020
    Revised Date: 29 April 2020
    Available Online: 25 May 2020

    Fund Project: Project supported by the Science and Technology Development Project of Jilin Province (No. 20170520137JH) and the National Natural Science Foundation of China for Youth (No. 21602015)the Science and Technology Development Project of Jilin Province 20170520137JHthe National Natural Science Foundation of China for Youth 21602015

Figures(2)

  • Chiral pyrrolidine skeletons containing trifluoromethyl group are core structural motifs in many natural products and medicines. As a consequence, extensive studies have been conducted on the exploitation of efficient methods for the asymmetric synthesis of such compounds. In this paper, Ming-Phos/Cu(I)-catalyzed asymmetric intermolecular[3+2] cycloaddition reaction of azomethine ylides and β-trifluoromethyl-α, β-unsaturated ketone was reported. A broad substrate scope was observed with high yield and enantioselectivity (up to 99% yield and 98% ee). The method is featured by its mild conditions, simple operation, easily available ligands and good functional group compatibility.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

    4. [4]

      (a) Kukhar, V. P.; Soloshonok, V. A. Fluorine Containing Amino Acids——Synthesis and Properties, Wiley, Chichester, 1995.
      (b) Nie, J.; Guo, H.-C.; Cahard D.; Ma, J.-A. Chem. Rev. 2010, 111, 455.
      (c) Hiyama, T. Organofluorine Compounds: Chemistry and Applications, Springer, New York, 2000.
      (d) Kirsch, P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity and Applications, 2nd ed., Wiley-VCH, Weinheim, 2013.
      (e) Bégué, J. P.; Bonnet-Delpon, D. Bioorganic and Medicinal Chemistry of Fluorine, Wiley-VCH, Weinheim, 2008.
      (f) Ojima, I. Fluorine in Medicinal Chemistry and Chemical Biology, Wiley-Blackwell, Chichester, 2009.
      (g) Gouverneur, V.; Muller, K. Fluorine in Pharmaceutical and Medicinal Chemistry: From Biophysical Aspects to Clinical Applications, Imperial College Press, London, 2012.

    5. [5]

      For recent reviews about 1, 3-dipolar cycloadditions of iminoesters, see: (a) Nair, V.; Suja, T. D. Tetrahedron 2007, 63, 12247.
      (b) Stanley, L. M.; Sibi, M. P. Chem. Rev. 2008, 108, 2887.
      (c) Álvarez-Corral, M.; Muñoz-Dorado, M.; Rodríguez-García, I. Chem. Rev. 2008, 108, 3174.
      (d) Naodovic, M.; Yamamoto, H. Chem. Rev. 2008, 108, 3132.
      (e) Engels, B.; Christl, M. Angew. Chem., Int. Ed. 2009, 48, 7968.
      (f) Adrio, J.; Carretero, J. C. Chem. Commun. 2011, 47, 6784.
      (g) Moyano, A.; Rios, R. Chem. Rev. 2011, 111, 4703.
      (h) Albrecht, Ł.; Jiang, H.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2011, 50, 8492.
      (i) Maroto, E. E.; Izquierdo, M.; Reboredo, S.; Marco-Martínez, J.; Filippone, S.; Martín, N. Acc. Chem. Res. 2014, 47, 2660.
      (j) Hashimoto, T.; Maruoka, K. Chem. Rev. 2015, 115, 5366.
      (k) Taggi, A. E.; Hafez, A. M.; Lectka, T. Acc. Chem. Res. 2003, 36, 10.
      (l) Dickstein, J. S.; Kozlowski, M. C. Chem. Soc. Rev. 2008, 37, 1166.
      (m) Kobayashi, S.; Mori, Y.; Fossey, J. S.; Salter, M. M. Chem. Rev. 2011, 111, 2626.

    6. [6]

    7. [7]

      (a) Zhi, Y.; Zhao, K.; Liu, Q.; Wang, A.; Enders, D. Chem. Commun. 2016, 52, 14011.
      (b) Huang, B.; Li, C.; Wang, H.; Wang, C.; Liu, L.; Zhang, J., Org. Lett. 2017, 19, 5102.
      (c) Wang, H.; Zhang, L.; Tu, Y.; Xiang, R.; Guo, Y.-L.; Zhang, J., Angew. Chem. Int. Ed. 2018, 57, 15787.
      (d) Ponce, A.; Alonso, I.; Adrio, J.; Carretero, J. C. Chem.-Eur. J. 2016, 22, 4952.
      (e) Dong, Z.; Zhu, Y.; Li, B.; Wang, C.; Yan, W.; Wang, K.; Wang, R. J. Org. Chem. 2017, 82, 3482.

    8. [8]

      (a) Bonnet-Delpon, D.; Chennoufi, A.; Rock, M. H. Bull. Soc. Chim. Fr. 1985, 132, 402.
      (b) Bégué, J.-P.; Bonnet-Delpon, D.; Chennoufi, A.; Ourévitch, M. K.; Ravikumar, S.; Rock, A. H. J. Fluorine Chem., 2001, 107, 275.

    9. [9]

      (a) Li, Q.-H.; Tong, M.-C.; Li, J.; Tao, H.-Y.; Wang, C.-J. Chem. Commun., 2011, 47, 11110.
      (b) Li, Q.-H, ; Xue, Z.-Y, ; Li, J, ; Tao, H.-Y, ; Wang, C.-J. Tetrahedron Lett. 2012, 53, 3650.

    10. [10]

      Tang, L.-W.; Zhao, B.-J.; Dai, L.; Zhang, M.; Zhou, Z.-M. Chem.-Asian J. 2016, 11, 2470.  doi: 10.1002/asia.201600941

    11. [11]

      For applications of Ming-Phos in asymmetric catalysis, see: (a) Zhang, Z.-M.; Chen, P.; Li, W.; Niu, Y.; Zhao, X. L.; Zhang, J. Angew. Chem., Int. Ed. 2014, 53, 4350.
      (b) Chen, M.; Zhang, Z.-M.; Yu, Z.; Qiu, H.; Ma, B.; Wu, H.-H.; Zhang, J. ACS Catal. 2015, 5, 7488.
      (c) Zhang, Z.-M.; Xu, B.; Xu, S.; Wu, H.-H.; Zhang, J. Angew. Chem., Int. Ed. 2016, 55, 6324.
      (d) Xu, B.; Zhang, Z.-M.; Xu, S.; Liu, B.; Xiao, Y.; Zhang, J. ACS Catal. 2017, 7, 210.
      (e) Di, X.; Wang, Y.; Wu, L.; Zhang, Z.-M.; Dai, Q.; Li, W.; Zhang, J. Org. Lett. 2019, 21, 3018.
      (f) Wang, Y.; Zhang, Z.-M.; Liu, F.; He, Y.; Zhang, J. Org. Lett. 2018, 20, 6403.
      (g) Zhou, L.; Li, S.; Xu, B.; Ji, D.; Wu, L.; Liu, Y.; Zhang Z.-M.; Zhang, J. Angew. Chem., Int. Ed. 2020, 59, 2769.
      (h) Zhou, L.; Xu, B.; Ji, D.; Zhang, Z.-M.; Zhang, J. Chin. J. Chem. 2020, 38, 577.

    12. [12]

    13. [13]

      Wu, Y.; Xu, B.; Liu, B.; Zhang, Z. M.; Liu, Y. Org. Biomol. Chem. 2019, 17, 1395.  doi: 10.1039/C8OB02922A

  • 加载中
    1. [1]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    2. [2]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    3. [3]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    4. [4]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    5. [5]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    6. [6]

      Ruolin CHENGYue WANGXiyao NIUHuagen LIANGLing LIUShijian LU . Efficient photothermal catalytic CO2 cycloaddition over W18O49/rGO composites. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1276-1284. doi: 10.11862/CJIC.20240424

    7. [7]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    8. [8]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    9. [9]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    10. [10]

      Zhanhui Yang Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032

    11. [11]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    12. [12]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    13. [13]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    14. [14]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    15. [15]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    16. [16]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    17. [17]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    18. [18]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    19. [19]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

    20. [20]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

Metrics
  • PDF Downloads(11)
  • Abstract views(1695)
  • HTML views(213)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return