Citation: Chen Kaihong, Li Hongru, He Liangnian. Advance and Prospective on CO2 Activation and Transformation Strategy[J]. Chinese Journal of Organic Chemistry, ;2020, 40(8): 2195-2207. doi: 10.6023/cjoc202004030 shu

Advance and Prospective on CO2 Activation and Transformation Strategy

  • Corresponding author: He Liangnian, heln@nankai.edu.cn
  • Received Date: 19 April 2020
    Revised Date: 22 May 2020
    Available Online: 29 May 2020

    Fund Project: the China Postdoctoral Science Foundation 2018M641624Project supported by the National Natural Science Foundation of China (No. 21975135) and the China Postdoctoral Science Foundation (No. 2018M641624)the National Natural Science Foundation of China 21975135

Figures(23)

  • Climate change and depletion of fossil fuels have drawn considerable attention. Considering carbon dioxide is both the dominant greenhouse gas and renewable C1 source, CO2 valorization into valuable chemicals is considered to reconcile the environment benefit and sustainable chemistry development. Unfortunately, the thermodynamic stability and kinetic inertness of CO2 make its chemical transformation challenging. As a consequence, developing highly efficient catalytic systems and synthetic protocols is crucial for CO2 conversion. In recent years, He's group made great progress on strategy design and catalyst development for CO2 conversion. A series novel CO2 conversion strategies are proposed, including CO2 capture and in-situ transformation, hierarchical reductive functionalization of CO2, designing thermodynamically favorable reactions by multi-component cascade reaction and photo-promoted CO2 transformation. Concurrently, the corresponding highly efficient catalytic systems were also developed based on the reaction mechanism and thus CO2 transformation was successfully performed under mild conditions. It is hoped that this review can arouse broad concern on CO2 transformation and spur its further development.
  • 加载中
    1. [1]

    2. [2]

      (a) Yang, Z.-Z.; He, L.-N.; Gao, J.; Liu, A.-H.; Yu, B. Energy Environ. Sci. 2012, 5, 6602.
      (b) Fu, H.-C.; You, F.; Li, H.-R.; He, L.-N. Front. Chem. 2019, 7, 525.
      (c) Kar, S.; Goeppert, A.; Prakash, G. K. S. Acc. Chem. Res. 2019, 52, 2892.

    3. [3]

      Yang, Z.-Z.; He, L.-N.; Zhao, Y.-N.; Li, B.; Yu, B. Energy Environ. Sci. 2011, 4, 3971.  doi: 10.1039/c1ee02156g

    4. [4]

      Zhao, Y.-N.; Yang, Z.-Z.; Luo, S.-H.; He, L.-N. Catal. Today 2013, 200, 2.  doi: 10.1016/j.cattod.2012.04.006

    5. [5]

      Yang, Z.-Z.; Zhao, Y.-N.; He, L.-N.; Gao, J.; Yin, Z.-S. Green Chem. 2012, 14, 519.  doi: 10.1039/c2gc16039k

    6. [6]

      Yang, Z.-Z.; He, L.-N.; Zhao, Y.-N.; Yu, B. Environ. Sci. Technol. 2013, 47, 1598.  doi: 10.1021/es304147q

    7. [7]

      (a) Meng, X.; Ju, Z.; Zhang, S.; Liang, X.; Solms, N.; Zhang, X.; Zhang, X. Green Chem. 2019, 21, 3456.
      (b) Luo, X.; Chen, K.; Li, H.; Wang, C. Int. J. Hydrogen Energy 2016, 41, 9175.

    8. [8]

      (a) Zhao, Y.; Yu, B.; Yang, Z.; Zhang, H.; Hao, L.; Gao, X.; Liu, Z. Angew. Chem., Int. Ed. 2014, 53, 5922.
      (b) Liu, A.-H.; Yu, N.; He, L.-N. Greenhouse Gases: Sci. Technol. 2015, 5, 17.
      (c) Shi, G.; Chen, K.; Wang, Y.; Li, H.; Wang, C. ACS Sustainable Chem. Eng. 2018, 6, 5760.
      (d) Lang, X.-D.; Yu, Y.-C.; Li, Z.-M.; He, L.-N. J. CO2 Util. 2016, 15, 115.

    9. [9]

      Liu, A.-H.; Ma, R.; Song, C, ; Yang, Z.-Z.; Yu, A.; Cai, Y.; He, L.-N.; Zhao, Y.-N.; Yu, B.; Song, Q.-W. Angew. Chem., Int. Ed. 2012, 51, 11306.  doi: 10.1002/anie.201205362

    10. [10]

      Zhang, S.; Li, Y.-N.; Zhang, Y.-W.; He, L.-N.; Yu, B.; Song, Q.-W.; Lang, X.-D. ChemSusChem 2014, 7, 1484.  doi: 10.1002/cssc.201400133

    11. [11]

      (a) Li, Y.-N.; He, L.-N.; Liu, A.-H.; Lang, X.-D.; Yang, Z.-Z.; Yu, B.; Luan, C.-R. Green Chem. 2013, 15, 2825.
      (b) Kothandaraman, J.; Goeppert, A.; Czaun, M.; Olah, G. A.; Prakash, G. K. S. J. Am. Chem. Soc. 2016, 138, 778.
      (c) Kothandaraman, J.; Goeppert, A.; Czaun, M.; Olah, G. A.; Prakash, G. K. S. Green Chem. 2016, 18, 5831.

    12. [12]

      Li, Y.-N.; He, L.-N.; Lang, X.-D.; Liu, X.-F.; Zhang, S. RSC Adv. 2014, 4, 49995.  doi: 10.1039/C4RA08740B

    13. [13]

      Das Neves Gomes, C.; Jacquet, O.; Villiers, C.; Thuery, P.; Ephritikhine, M.; Cantat, T. Angew. Chem., Int. Ed. 2012, 51, 187.  doi: 10.1002/anie.201105516

    14. [14]

      (a) Liu, X.-F.; Ma, R.; Qiao, C.; Cao, H.; He, L.-N. Chem.-Eur. J. 2016, 22, 16489.
      (b) Fang, C.; Lu, C.; Liu, M.; Zhu, Y.; Fu, Y.; Liu, B.-L. ACS Catal. 2016, 6, 7876.

    15. [15]

      (a) Liu, X.-F.; Qiao, C.; Li, X.-Y.; He, L.-N. Green Chem. 2017, 19, 1726.
      (b) Liu, X.-F.; Qiao, C.; Li, X.-Y.; He, L.-N. Pure Appl. Chem. 2018, 90, 1099.
      (c) Liu, X.-F.; Li, X.-Y.; Qiao, C.; He, L.-N. Synlett 2018, 28, 548.
      (d) Liu, X.-F.; Li, X.-Y.; He, L.-N. Eur. J. Org. Chem. 2019, 2019, 2347.

    16. [16]

      (a) Jacquet, O.; Das Neves Gomes, C.; Ephritikhine, M.; Cantat, T. J. Am. Chem. Soc. 2012, 134, 2934.
      (b) Li, X.-Y.; Zheng, S.-S.; Liu, X.-F.; Yang, Z.-W.; Tan, T.-Y.; Yu, A.; He, L.-N. ACS Sustainable Chem. Eng. 2018, 6, 8130.
      (c) Li, G.; Chen, J.; Zhu, D.-Y.; Chen, Y.; Xia, J.-B. Adv. Synth. Catal. 2018, 360, 2364.

    17. [17]

      (a) Wang, M.-Y.; Wang, N.; Liu, X.-F.; Qiao, C.; He, L.-N. Green Chem. 2018, 20, 1564.
      (b) Liu, X.-F.; Li, X.-Y.; Qiao, C.; Fu, H.-C.; He, L.-N. Angew. Chem., Int. Ed. 2017, 56, 7425.
      (c) Cao, Y.; Wang, N.; He, X.; Li, H.-R.; He, L.-N. ACS Sustainable Chem. Eng. 2018, 6, 15032.

    18. [18]

      (a) Li, X.-D.; Xia, S.-M.; Chen, K.-H.; Liu, X.-F.; Li, H.-R.; He, L.-N. Green Chem. 2018, 20, 4853.
      (b) Li, W.-D.; Zhu, D.-Y.; Li, G.; Chen, J.; Xia, J.-B. Adv. Synth. Catal. 2019, 361, 5098.

    19. [19]

      Lang, X.-D.; He, L.-N. ChemSusChem 2018, 11, 2062.  doi: 10.1002/cssc.201800902

    20. [20]

      (a) Qiao, C.; Liu, X.-F.; Liu, X.; He, L.-N. Org. Lett. 2017, 19, 1490.
      (b) Qiao, C.; Yao, X.-Y.; Liu, X.-F.; Li, H.-R.; He, L.-N. Asian J. Org. Chem. 2018, 7, 1815.

    21. [21]

      Lang, X.-D.; You, F.; He, X.; Yu, Y.-C.; He, L.-N. Green Chem. 2019, 21, 509.  doi: 10.1039/C8GC03933J

    22. [22]

      (a) Diao, Z.-F.; Zhou, Z.-H.; Guo, C.-X.; Yu, B.; He, L.-N. RSC Adv. 2016, 6, 32400.
      (b) Du, Y.; Kong, D.-L.; Wang, H.-Y.; Cai, F.; Tian, J.-S.; Wang, J.-Q.; He, L.-N. J. Mol. Catal. A: Chem. 2005, 241, 233.
      (c) Tamura, M.; Honda, M.; Nakagawa, Y.; Tomishige, K. J. Chem. Technol. Biotechnol. 2014, 89, 19.
      (d) Liu, A.-H.; Li, Y.-N.; He, L.-N. Pure Appl. Chem. 2012, 84, 581.
      (e) Lang, X.-D.; He, L.-N. Chem. Rec. 2016, 16, 1337.
      (f) Li, X.-D.; He, X.; Liu, X.-F.; He, L.-N. Sci. China: Chem. 2017, 60, 841.
      (g) Wang, M.-Y.; He, L.-N. Sci. China: Chem. 2016, 59, 507.

    23. [23]

      Zhou Z.-H.; Xia S.-M.; He, L.-N. Acta Phys.-Chim. Sin. 2018, 34, 838.  doi: 10.3866/PKU.WHXB201712271

    24. [24]

      Zhou, Z.-H.; Song, Q.-W.; He, L.-N. ACS Omega 2017, 2, 337.  doi: 10.1021/acsomega.6b00407

    25. [25]

      Song, Q.-W.; Zhou, Z.-H.; Wang, M.-Y.; Zhang, K.; Liu, P.; Xun, J.-Y.; He, L.-N. ChemSusChem 2016, 9, 2054.  doi: 10.1002/cssc.201600470

    26. [26]

      Li, X.-D.; Song, Q.-W.; Lang, X.-D.; Chang, Y.; He, L.-N. ChemPhysChem 2017, 18, 3182.  doi: 10.1002/cphc.201700297

    27. [27]

      Li, X.-D.; Cao, Y.; Ma, R.; He, L.-N. J. CO2 Util. 2018, 25, 338.  doi: 10.1016/j.jcou.2018.01.022

    28. [28]

      Xia, S.-M.; Song, Y.; Li, X.-D.; Li, H.-R.; He, L.-N. Molecules 2018, 23, 3033.  doi: 10.3390/molecules23113033

    29. [29]

      Song, Q.-W.; Yu, B.; Li, X.-D.; Ma, R.; Diao, Z.-F.; Li, R.-G.; Li, W.; He, L.-N. Green Chem. 2014, 16, 1633.  doi: 10.1039/c3gc42406e

    30. [30]

      Song, Q.-W.; Zhou, Z.-H.; Yin, H.; He, L.-N. ChemSusChem 2015, 8, 3967.  doi: 10.1002/cssc.201501176

    31. [31]

      Li, X.-D.; Lang, X.-D.; Song, Q.-W.; Guo, Y.-K.; He, L.-N. Chin. J. Org. Chem. 2016, 36, 744(in Chinese).  doi: 10.6023/cjoc201512037

    32. [32]

      (a) Song, Q.-W.; Chen, W.-Q.; Ma, R.; Yu, A.; Li, Q.-Y.; Chang, Y.; He, L.-N. ChemSusChem 2015, 8, 821.
      (b) Zhou, Z.-H.; Guo, C.-X.; Xie, J.-N.; Liu, K.-X.; He, L.-N. Curr. Org. Synth. 2017, 14, 1185.
      (c) He, L.-N. Curr. Org. Synth. 2020, 17, 2.
      (d) He, L.-N. Mini-Rev. Org. Chem. 2019, 16, 409.

    33. [33]

      (a) Zhou, Z.-H.; Zhang, X.; Huang, Y.-F.; Chen, K.-H.; He, L.-N. Chin. J. Catal. 2019, 40, 1345.
      (b) Zhou, Z.-H.; Chen, K.-H.; He, L.-N. Chin. J. Chem. 2019, 37, 1223.

    34. [34]

      (a) Bonin, J.; Maurin, A.; Robert, M. Coord. Chem. Rev. 2017, 334, 184.
      (b) Tamaki, Y.; Ishitani, O. ACS Catal. 2017, 7, 3394.
      (c) Chang, X.; Wang, T.; Yang, P.; Zhang, G.; Gong, J. Adv. Mater. 2018, 1804710.
      (d) Wu, J.; Huang, Y.; Ye, W.; Li, Y. Adv. Sci. 2017, 4, 1700194.
      (e) Zhao, Y.; Waterhouse, G. I. N.; Chen G.; Xiong, X.; Wu, L. Z.; Tung, C. H.; Zhang, T. Chem. Soc. Rev. 2019, 48, 1972.

    35. [35]

      (a) Ye, J. H.; Miao, M.; Huang, H.; Yan, S. S.; Yin, Z. B.; Zhou, W. J.; Yu, D. G. Angew. Chem., Int. Ed. 2017, 56, 15416.
      (b) Yin, Z. B.; Ye, J. H.; Zhou, W. J.; Zhang, Y. H.; Ding, L.; Gui, Y. Y.; Yan, S. S.; Li, J.; Yu, D. G. Org. Lett. 2018, 20, 190.
      (c) Sun, L.; Ye, J. H.; Zhou, W. J.; Zeng, X.; Yu, D. G. Org. Lett. 2018, 20, 3049.
      (d) Ju, T.; Fu, Q.; Ye, J. H.; Zhang, Z.; Liao, L. L.; Yan, S. S.; Tian, X. Y.; Luo, S. P.; Li, J.; Yu, D. G. Angew. Chem., Int. Ed. 2018, 57, 13897.
      (e) Liao, L. L.; Cao, G. M.; Ye, J. H.; Sun, G. Q.; Zhou, W. J.; Gui, Y. Y.; Yan, S. S.; Shen, G.; Yu, D. G. J. Am. Chem. Soc. 2018, 140, 17338.
      (f) Fan, X.; Gong, X.; Ma, M. Nat. Commun. 2018, 9, 4936.
      (g) Murata, K.; Numasawa, N.; Shimomaki, K.; Chem. Commun. 2017, 53, 3098.
      (h) Yeung, C. S. Angew. Chem., Int. Ed. 2019, 58, 5491.

    36. [36]

      Wang, M.-Y.; Cao, Y.; Liu, X.; Wang, N.; He, L.-N.; Li, S.-H. Green Chem. 2017, 19, 1240.  doi: 10.1039/C6GC03200A

    37. [37]

      He, X.; Cao, Y.; Lang, X.-D.; Wang, N.; He, L.-N. ChemSusChem 2018, 11, 3382.  doi: 10.1002/cssc.201801621

    38. [38]

    39. [39]

      (a) Poland, S. I.; Darensbourg, D. J. Green Chem. 2017, 19, 4990.
      (b) Wang, Y.; Darensbourg, D. J. Coord. Chem. Rev. 2018, 372, 85.
      (c) Lu, X. B.; Darensbourg, D. J. Chem. Soc. Rev. 2012, 41, 1462.
      (d) Kember, M. R.; Buchard, A.; Williams, C. K. Chem. Commun. 2011, 47, 141.
      (e) Lu, X. B.; Ren, W. M.; Wu, G. P. Acc. Chem. Res. 2012, 45, 1721.

    40. [40]

      (a) Leino, E.; Maki-Arvela, P.; Eta, V. Appl. Catal., A 2010, 383, 1.
      (b) Shukla, K.; Srivastava, V. C. Catal. Rev.: Sci. Eng. 2017, 59, 1.
      (c) Dai, W. L.; Luo, S. L.; Yin, S. F. Appl. Catal., A 2009, 366, 2.
      (d) Sakakura, T.; Kohno, K. Chem. Commun. 2009, 1312.
      (e) Tamboli, A. H.; Chaugule, A. A.; Kim, H. Chem. Eng. J. 2017, 323, 530.

    41. [41]

      (a) Broere, D. L. J.; Mercado, B. Q.; Holland, P. L. Angew. Chem., Int. Ed. 2018, 57, 6507.
      (b) Waldman, T. E.; Mcghee, W. D. J. Chem. Soc., Chem. Commun. 1994, 8, 957.
      (c) Camp, C.; Chatelain, L.; Kefalidis, C. E. Chem. Commun. 2015, 51, 15454.
      (d) Maria, L.; Bandeira, N. A. G.; Marcalo, J. Chem. Commun. 2020, 56, 431.
      (e) Keane, A. J.; Farrell, W. S.; Yonke, B. L. Angew. Chem., Int. Ed. 2015, 54, 10220.

    42. [42]

    43. [43]

    44. [44]

      Wang, H.; Zhao, Y.; Ke, Z.; Yu, B.; Li, R.; Wu, Y.; Wang, Z.; Han, J.; Liu, Z. Chem. Commun. 2019, 55, 3069.  doi: 10.1039/C9CC00819E

    45. [45]

      (a) Akatsuka, M.; Kawaguchi, Y.; Itoh, R.; Ozawa, A.; Yamamoto, M.; Tanabe, T.; Yoshida, T. Appl. Catal., B 2020, 262, 118247.
      (b) Teramura, K.; Hori, K.; Terao, Y.; Huang, Z.; Iguchi, S.; Wang, Z.; Asakura, H.; Hosokawa, S.; Tanaka, T. J. Phys. Chem. C 2017, 121, 8711.
      (c) Nakada, A.; Ishitani, O. ACS Catal. 2018, 8, 354.
      (d) Takayama, T.; Sato, K.; Fujimura, T.; Kojima, Y.; Iwase A.; Kudo, A. Faraday Discuss. 2017, 198, 397.
      (e) Barman, S.; Das, S.; Sreejith S. S.; Garai, S.; Pochamoni, R.; Roy, S. Chem. Commun. 2018, 54, 2369.
      (f) Nakanishi, H.; Iizuka, K.; Takayama, T.; Iwase, A.; Kudo, A. ChemSusChem 2017, 10, 112.
      (g) Yin, G.; Sako, H.; Gubbala, R. V.; Ueda, S.; Yamaguchi, A.; Abe, H.; Miyauchi, M. Chem. Commun. 2018, 54, 3947.

    46. [46]

      (a) Xu, S.; Carter, E. A. Chem. Rev. 2019, 119, 6631;
      (b) Yuan, Y. P.; Ruan, L. W.; Barber, J. Energy Environ. Sci. 2014, 7, 3934.
      (c) Daiyan, R.; Lu, X.; Ng, Y. H. ChemSusChem 2017, 10, 4342.

    47. [47]

      He, L. N.; Wang, J. Q.; Wang, J. L. Pure Appl. Chem. 2009, 81, 2069.  doi: 10.1351/PAC-CON-08-10-22

    48. [48]

      (a) Lang, X. D.; Yu, Y. C.; He, L. N. J. Mol. Catal. A: Chem. 2016, 420, 208.
      (b) Xu, H.; Liu, X. F.; Cao, C. S.; Zhao, B.; Cheng, P.; He, L. N. Adv. Sci. 2016, 3, 1600048.
      (c) Cao, C. S.; Xia, S. M.; Song, Z. J.; Xu, H.; Shi, Y.; He, L. N.; Cheng, P.; Zhao, B. Angew. Chem., Int. Ed. 2020, 59, 8586.

    49. [49]

  • 加载中
    1. [1]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    2. [2]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    3. [3]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    4. [4]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    8. [8]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    9. [9]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    12. [12]

      Jiajia Wang Sibo Huang Xijing Gao Chaoxun Liu Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050

    13. [13]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    14. [14]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    15. [15]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    16. [16]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    17. [17]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    18. [18]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    19. [19]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    20. [20]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

Metrics
  • PDF Downloads(107)
  • Abstract views(3918)
  • HTML views(1475)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return