Citation: Liu Jingjing, Zhang Donghui, Jiang Weinan, Liu Runhui. Simple and Cost-Effective Synthesis of Fmoc-DOPA(acetonide)-OH[J]. Chinese Journal of Organic Chemistry, ;2020, 40(8): 2543-2546. doi: 10.6023/cjoc202004029 shu

Simple and Cost-Effective Synthesis of Fmoc-DOPA(acetonide)-OH

  • Corresponding author: Liu Runhui, rliu@ecust.edu.cn
  • Received Date: 19 April 2020
    Revised Date: 13 May 2020
    Available Online: 29 May 2020

    Fund Project: the Fundamental Research Funds for the Central Universities 50321041917001Project supported by the National Natural Science Foundation of China (Nos. 21774031, 31800801), the Natural Science Foundation of Shanghai City (No. 18ZR1410300), and the Fundamental Research Funds for the Central Universities (Nos. 22221818014, 50321041917001)the Fundamental Research Funds for the Central Universities 22221818014the National Natural Science Foundation of China 21774031the Natural Science Foundation of Shanghai City 18ZR1410300the National Natural Science Foundation of China 31800801

Figures(2)

  • 3, 4-Dihydroxyphenylalanine (DOPA) derivatives inspired by mussels have attracted broad interest in functional coatings of biomaterials and biomedical devices. Fmoc-DOPA(acetonide)-OH is the key precursor for solid-phase synthesis of adhesive mussel proteins and peptides. However, existing synthesis methods of Fmoc-DOPA(acetonide)-OH were tedious and costly which greatly hindered its practical application. Herein, a simple two-step strategy for preparing Fmoc-DOPA-(acetonide)-OH is reported, which is a simple and cost-effective synthesis method with broad application prospects.
  • 加载中
    1. [1]

      (a) Waite, J. H.; Qin, X. Biochemistry 2001, 40, 2887.
      (b) Kord Forooshani, P.; Lee, B. P. J. Polym. Sci., Part A: Polym. Chem. 2016, 55, 9.
      (c) Lee, B. P.; Messersmith, P. B.; Israelachvili, J. N.; Waite, J. H. Annu. Rev. Mater. Res. 2011, 41, 99.

    2. [2]

      (a) Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Science 2007, 318, 426.
      (b) Lee, H. A.; Ma, Y. F.; Zhou, F.; Hong, S.; Lee, H. Acc. Chem. Res. 2019, 52, 704.
      (c) Ye, Q.; Zhou, F.; Liu, W. M. Chem. Soc. Rev. 2011, 40, 4244.

    3. [3]

      (a) Liu, Y.; Ai, K.; Lu, L. Chem. Rev. 2014, 114, 5057.
      (b) Wu, R.; Ding, X. K.; Qi, Y.; Zeng, Q.; Wu, Y. W.; Yu, B. R.; Xu, F. J. Small 2018, 14, 11.
      (c) Xu, M.; Khan, A.; Wang, T.; Song, Q.; Han, C.; Wang, Q.; Gao, L.; Huang, X.; Li, P.; Huang, W. ACS Appl. Bio Mater. 2019, 2, 3329.
      (d) Li, X. Y.; Gao, P.; Tan, J. Y.; Xiong, K. Q.; Maitz, M. F.; Pan, C. J.; Wu, H. K.; Chen, Y.; Yang, Z. L.; Huang, N. ACS Appl. Mater. Interfaces 2018, 10, 40844.
      (e) Pandey, N.; Hakamivala, A.; Xu, C. C.; Hariharan, P.; Radionov, B.; Huang, Z.; Liao, J.; Tang, L. P.; Zimmern, P.; Nguyen, K. T.; Hong, Y. Adv. Healthcare Mater. 2018, 7, 1701069.

    4. [4]

      (a) Barclay, T. G.; Hegab, H. M.; Clarke, S. R.; Ginic-Markovic, M. Adv. Mater. Interfaces 2017, 4, 1601192.
      (b) Liu, X. S.; Cao, J. M.; Li, H.; Li, J. Y.; Jin, Q.; Ren, K. F.; Ji, J. ACS Nano 2013, 7, 9384.
      (c) Yang, C.; Ding, X.; Ono, R. J.; Lee, H.; Hsu, L. Y.; Tong, Y. W.; Hedrick, J.; Yang, Y. Y. Chem. Sci. 2014, 26, 7346.
      (d) Sheng, W. B.; Li, B.; Wang, X. L.; Dai, B.; Yu, B.; Jia, X.; Zhou, F. Chem. Sci. 2015, 6, 2068.
      (e) Zhang, S. X.; Liu, W. Y.; Dong, Y. S.; Wei, T.; Wu, Z. Q.; Chen, H. Langmuir 2019, 35, 3470.
      (f) Liu, L.; Tian, X. H.; Ma, Y.; Duan, Y. Q.; Zhao, X.; Pan, G. Q. Angew. Chem., Int. Ed. 2018, 57, 7878.
      (g) Wu, J. X.; Zheng, Y. J.; Jiang, S. B.; Qu, Y. C.; Wei, T.; Zhan, W. J.; Wang, L.; Yu, Q.; Chen, H. ACS Appl. Mater. Interfaces 2019, 11, 12357.

    5. [5]

      (a) Zhao, Y. H.; Wu, Y.; Wang, L.; Zhang, M. M.; Chen, X.; Liu, M. J.; Fan, J.; Liu, J. Q.; Zhou, F.; Wang, Z. K. Nat. Commun. 2017, 8, 8.
      (b) Sheng, W. B.; Li, W.; Yu, B.; Li, B.; Jordan, R.; Jia, X.; Zhou, F. Angew. Chem., Int. Ed. 2019, 58, 12018.
      (c) Cong, Z. Q.; Zhang, L.; Ma, S. Q.; Lam, K. S.; Yang, F. F.; Liao, Y. H. ACS Nano 2020, 14, 1958.

    6. [6]

      (a) Liu, L.; Tian, X. H.; Ma, Y.; Duan, Y. Q.; Zhao, X.; Pan, G. Q. Angew. Chem., Int. Ed. 2018, 57, 7878.
      (b) Kuang, J.; Messersmith, P. B. Langmuir 2012, 28, 7258.
      (c) Statz, A. R.; Meagher, R. J.; Barron, A. E.; Messersmith, P. B. J. Am. Chem. Soc. 2005, 127, 7972.

    7. [7]

      Liu, Z.; Hu, B. H.; Messersmith, P. B. Tetrahedron Lett. 2008, 49, 5519.  doi: 10.1016/j.tetlet.2008.07.052

    8. [8]

      Messersmith, P. B.; Hu, B.-H.; Liu, Z. US 0087622, 2010.

    9. [9]

      St-Georges, C.; Desilets, A.; Beliveau, F.; Ghinet, M.; Dion, S. P.; Colombo, E.; Boudreault, P. L.; Najmanovich, R. J.; Leduc, R.; Marsault, E. Eur. J. Med. Chem. 2017, 129, 110.  doi: 10.1016/j.ejmech.2017.02.006

    10. [10]

      Sever, M. J.; Wilker, J. J. Tetrahedron 2001, 57, 6139.  doi: 10.1016/S0040-4020(01)00601-9

    11. [11]

      (a) Tredwell, M.; Preshlock, S. M.; Taylor, N. J.; Gruber, S.; Huiban, M.; Passchier, J.; Mercier, J.; Génicot, C.; Gouverneur, V. Angew. Chem., Int. Ed. 2014, 53, 7751.
      (b) Liu, Z.; Hu, B. H.; Messersmith, P. B. Tetrahedron Lett. 2008, 49, 5519.

    12. [12]

      oloshonok, V. A.; Ueki, H. Synthesis 2008, 693.

  • 加载中
    1. [1]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    2. [2]

      Chao LiuHuan YuJiaming LiXi YuZhuangzhi YuYuxi SongFeng ZhangQinfang ZhangZhigang Zou . 具有光热效应的多级Ti3C2/Bi12O17Br2肖特基异质结简单合成及其太阳能驱动抗生素光降解的研究. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-0. doi: 10.1016/j.actphy.2025.100075

    3. [3]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    4. [4]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    5. [5]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    6. [6]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    7. [7]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    8. [8]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    9. [9]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    10. [10]

      Jia WangQing QinZhe WangXuhao ZhaoYunfei ChenLiqiang HouShangguo LiuXien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044

    11. [11]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    12. [12]

      Qianping Li Hua Guan Changfeng Wan Yonghai Song Jianwen Jiang . 大学有机化学复习课项目式教学——以“液晶化合物4-正戊基苯甲酸-4′-正戊基苯酯的合成路线设计与产品制备”为例. University Chemistry, 2025, 40(8): 100-116. doi: 10.12461/PKU.DXHX202410070

    13. [13]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

    14. [14]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    15. [15]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    16. [16]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    17. [17]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    18. [18]

      Jingjie Tang Luying Xie Jiayu Liu Shangyu Shi Xinyu Sun Jiayang Lin Qikun Yang Chuan'ang Yu Zecheng Wang Yingying Wang Zengyang Xie . Efficient Rapid Synthesis and Antibacterial Activities of Tosylhydrazones: A Recommended Innovative Chemistry Experiment for Undergraduate Medical University. University Chemistry, 2024, 39(3): 316-326. doi: 10.3866/PKU.DXHX202309091

    19. [19]

      Haiyu ZhuZhuoqun WenWen XiongXingzhan WeiZhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-0. doi: 10.1016/j.actphy.2025.100078

    20. [20]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

Metrics
  • PDF Downloads(30)
  • Abstract views(3089)
  • HTML views(827)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return