Citation: Xu-Xu Qing-Feng, Huang Xian-Yun, Zhang Xiao, You Shu-Li. Synthesis of 1, 2-Dihydroquinolines by Reduction of Quinolines with Sodium Cyanoborohydride[J]. Chinese Journal of Organic Chemistry, ;2020, 40(10): 3446-3451. doi: 10.6023/cjoc202004015 shu

Synthesis of 1, 2-Dihydroquinolines by Reduction of Quinolines with Sodium Cyanoborohydride

  • Corresponding author: You Shu-Li, slyou@sioc.ac.cn
  • Received Date: 10 April 2020
    Revised Date: 9 May 2020
    Available Online: 15 May 2020

    Fund Project: the National Natural Science Foundation of China 21821002the Ministry of Science and Technology of China 2016YFA0202900Project supported by the Ministry of Science and Technology of China (No. 2016YFA0202900) and the National Natural Science Foundation of China (No.21821002)

Figures(4)

  • An efficient conversion of quinolines to 1, 2-dihydroquinolines (50%~96% yield) was developed via the modification of the known methods. It was found that using sodium cyanoborohydride as a reductant would overcome the low conversion often encountered in previous studies. A series of N-alkoxycarbonyl-1, 2-dihydroquinolines were obtained through reduction of activated quinolium salts. Notably, with the exception of the 3-and 4-substituted substrates, a mixture of 1, 2-dihydro-quinolines and the over reduced tetrahydroquinolines was obtained with the ratio over 4:1. Besides, compared to the established methods, an easy operation without using large excess of chloroformate further enhances practicability of the methodology.
  • 加载中
    1. [1]

      (a) Belleau, B.; Martel, R. R.; Lacasse, G.; Menard, M.; Weinberg, N. L.; Perron, Y. G. J. Am. Chem. Soc. 1968, 90, 823.
      (b) Dillard, R. D.; Pavey, D. E.; Benslay, D. N. J. Med. Chem. 1973, 16, 251.
      (c) Takahashi, H.; Bekkali, Y.; Capolino, A. J.; Gilmore, T.; Goldrick, S. E.; Nelson, R. M.; Trenzio, D.; Wang, J.; Zuvela-Jelaska, L.; Proudfoot, J.; Nabozny, G.; Thomson, D. Bioorg. Med. Chem. Lett. 2006, 16, 1549.
      (d) Victor, N. J.; Sakthivel, R.; Muraleedharan, K. M.; Karunagaran, D. ChemMedChem 2013, 8, 1623.
      (e) Duggirala, S.; Napoleon, J. V.; Nankar, R. P.; Adeeba, V. S.; Manheri, M. K.; Doble, M. Eur. J. Med. Chem. 2016, 123, 557.

    2. [2]

    3. [3]

      (a) Li, G.; Liu, H.; Wang, Y.; Zhang, S.; Lai, S.; Tang, L.; Zhao, J.; Tang, Z. Chem. Commun. 2016, 52, 2304.
      (b) Kubota, K.; Watanabe, Y.; Ito, H. Adv. Synth. Catal. 2016, 358, 2379.
      (c) Kong, D.; Han, S.; Wang, R.; Li, M.; Zi, G.; Hou, G. Chem. Sci. 2017, 8, 4558.
      (d) Kong, D.; Han, S.; Zi, G.; Hou, G.; Zhang, J. J. Org. Chem. 2018, 83, 1924.
      (e) Xu-Xu, Q.-F.; Zhang, X.; You, S.-L. Org. Lett. 2019, 21, 5357.
      (f) Wedek, V.; Lommel, R. V.; Daniliuc, C. G.; Proft, F. D.; Hennecke, U. Angew. Chem. Int. Ed. 2019, 58, 9239.
      (g) Xu-Xu, Q.-F.; Zhang, X.; You, S.-L. Org. Lett. 2020, 22, 1530.

    4. [4]

      For a related reaction by using 1, 2-dihydropyridines, see: Kubota, K.; Watanabe, Y.; Hayama, K.; Ito, H. J. Am. Chem. Soc. 2016, 138, 4338.

    5. [5]

      (a) Tiwari, V. K.; Pawar, G. G.; Das, R.; Adhikary, A.; Kapur, M. Org. Lett. 2013, 15, 3310.
      (b) Das, R.; Khot, N. P.; Deshpande, A. S.; Kapur, M. Chem. Eur. J. 2020, 26, 927.

    6. [6]

      Pang, M.; Chen, J.-Y.; Zhang, S.; Liao, R.-Z.; Tung, C.-H.; Wang, W. Nat. Commun. 2020, 11, 1249.  doi: 10.1038/s41467-020-15118-x

    7. [7]

    8. [8]

      For selected reviews, see: (a) Wang, D.-S.; Chen, Q.-A.; Lu, S.-M.; Zhou, Y.-G. Chem. Rev. 2012, 112, 2557.
      (b) Luo, Y.-E.; He, Y.-M.; Fan, Q.-H. Chem. Rec. 2016, 16, 2697.
      (c) Giustra, Z. X.; Ishibashi, J. S. A.; Liu, S.-Y. Coord. Chem. Rev. 2016, 314, 134.
      (d) Meng, W.; Feng, X.; Du, H. Acc. Chem. Res. 2018, 51, 191.
      (e) Meng, W.; Feng, X.; Du, H. Chin. J. Chem. 2020, 38, 625. For recent examples, see:
      (f) Cai, X.-F.; Huang, W.-X.; Chen, Z.-P.; Zhou, Y.-G. Chem. Commun. 2014, 50, 9588.
      (g) Li, B.; Xu, C.; He, Y.-M.; Deng, G.-J.; Fan, Q.-H. Chin. J. Chem. 2018, 36, 1169.
      (h) Chen, Y.; He, Y.-M.; Zhang, S.; Miao, T.; Fan, Q.-H. Angew. Chem. Int. Ed. 2019, 58, 3809.
      (i) Hu, X.-H.; Hu, X.-P. Org. Lett. 2019, 21, 10003.
      (j) Liu, Y.; Chen, F.; He, Y.-M.; Li, C.; Fan, Q.-H. Org. Biomol. Chem. 2019, 17, 5099.
      (k) Chen, Y.; Pan, Y.; He, Y.-M.; Fan, Q.-H. Angew. Chem. Int. Ed. 2019, 58, 16831.
      (l) Li, X.; Tian, J.-J.; Liu, N.; Tu, X.-S.; Zeng, N.-N.; Wang, X.-C. Angew. Chem. Int. Ed. 2019, 58, 4664.
      (m) Tao, L.; Ren, Y.; Li, C.; Li, H.; Chen, X.; Liu, L.; Yang, Q. ACS Catal. 2020, 10, 1783.
      (n) Wang, L.-R.; Chang, D.; Feng, Y.; He, Y.-M.; Deng, G.-J.; Fan, Q.-H. Org. Lett. 2020, 22, 2251.

    9. [9]

    10. [10]

      For a review, see: (a) Park, S.; Chang, S. Angew. Chem. Int. Ed. 2017, 56, 7720.
      For selected examples, see:
      (b) Voutchkova, A. M.; Gnanamgari, D.; Jakobsche, C. E.; Butler, C.; Miller, S. J.; Parr, J.; Crabtree, R. H. J. Organomet. Chem. 2008, 693, 1815.
      (c) Arrowsmith, M.; Hill, M. S.; Hadlington, T.; Kociok-Köhn, G.; Weetman, C. Organometallics 2011, 30, 5556.
      (d) Dudnik, A. S.; Weidner, V. L.; Motta, A.; Delferro, M.; Marks, T. J. Nat. Chem. 2014, 6, 1100.
      (e) Intemann, J, ; Bauer, H.; Pahl, J.; Maron, L.; Harder, S. Chem. Eur. J. 2015, 21, 11452.
      (f) Jeong, J.; Park, S.; Chang, S. Chem. Sci. 2016, 7, 5362.
      (g) Liu, Z.-Y.; Wen, Z.-H.; Wang, X.-C. Angew. Chem. Int. Ed. 2017, 56, 5817.
      (h) Zhang, F.; Song, H.; Zhuang, X.; Tung, C.-H.; Wang, W. J. Am. Chem. Soc. 2017, 139, 17775.
      (i) Rao, B.; Chong, C. C.; Kinjo, R. J. Am. Chem. Soc. 2018, 140, 652.

    11. [11]

      Too, P. C.; Chan, G. H.; Tnay, Y. L.; Hirao, H.; Chiba, S. Angew. Chem. Int. Ed. 2016, 55, 3719.  doi: 10.1002/anie.201600305

    12. [12]

      Blackburn, B. K.; Frysinger, J. F.; Minter, D. E. Tetrahedron Lett. 1984, 25, 4913.  doi: 10.1016/S0040-4039(01)91257-2

  • 加载中
    1. [1]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    2. [2]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    3. [3]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    4. [4]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    5. [5]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    6. [6]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    7. [7]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    8. [8]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    9. [9]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    10. [10]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    11. [11]

      Hongyi Zhang Zhihong Shi Zhijun Zhang . A New Strategy for “De-formulized” Calculation of Dynamic Buffer Capacity in Analytical Chemistry Education. University Chemistry, 2024, 39(3): 390-394. doi: 10.3866/PKU.DXHX202309030

    12. [12]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    13. [13]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    14. [14]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    15. [15]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    16. [16]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    17. [17]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    18. [18]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    19. [19]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    20. [20]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

Metrics
  • PDF Downloads(30)
  • Abstract views(2228)
  • HTML views(578)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return