Citation: Liu Yingjie, Li Chen, Meng Jianping, Song Dongxue, Liu Bing, Xu Ying. Recent Progress in Monofluoromethylation[J]. Chinese Journal of Organic Chemistry, ;2020, 40(8): 2322-2337. doi: 10.6023/cjoc202003055 shu

Recent Progress in Monofluoromethylation

  • Corresponding author: Liu Yingjie, liuyj691@nenu.edu.cn
  • Received Date: 24 March 2020
    Revised Date: 25 April 2020
    Available Online: 15 May 2020

    Fund Project: Outstanding Youth Project of Natural Science Foundation of Heilongjiang Province YQ2019B004Youth Innovation Talent Project of Harbin University of Commerce 2016QN056Youth Reserve Talent Program of Harbin University of Commerce 2019CX36Project supported by the Outstanding Youth Project of Natural Science Foundation of Heilongjiang Province (No. YQ2019B004) and the Youth Innovation Talent Project of Harbin University of Commerce (No. 2016QN056) and the Youth Reserve Talent Program of Harbin University of Commerce (No. 2019CX36)

Figures(51)

  • Organic fluorides play an indispensable role in medicine, agricultural chemistry and other fields, among them fluoromethyl functional groups have strong lipophilicity, which can greatly improve the pharmacokinetics properties of drug molecules. Therefore, it is of great value to develop various fluorination reactions, especially to introduce monofluoromethyl into molecules in fluorination chemistry. The research progress of the monofluoromethylation of different structural molecules is summarized according to the classification of fluoromethyl reagents, and the possible mechanism of some reactions is discussed.
  • 加载中
    1. [1]

      Harpere, D. B.; O'Hagan, D. Nat. Prod. Rep. 1994, 11, 123.

    2. [2]

      (a) Ni, C.; Hu, M.; Hu, J. Chem. Rev. 2015, 115, 765.
      (b) Xu, X.-H.; Matsuzaki, K.; Shibata, N. Chem. Rev. 2015, 115, 731.
      (c) Boiko, V. N. Beilstein J. Org. Chem. 2010, 6, 880.

    3. [3]

      (a) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
      (b) Jeschke, P. ChemBioChem 2004, 5, 590.

    4. [4]

      (a) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
      (b) Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
      (c) Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A. J. Med. Chem. 2015, 58, 8315.

    5. [5]

      Some examples: (a) Wang, J.; Sánchez-Roselló, M.; Aceña, J.; del Pozo, C. L.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
      (b) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
      (c) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359.

    6. [6]

      (a) Wong, D. T.; Perry, K. W.; Bymaster, F. P. Nat. Rev. 2005, 4, 764.
      (b) Kirk, K. L. Org. Process Res. Dev. 2008, 12, 305.
      (c) Wang, J.; Sanchez-Rosello, M.; Acena, J.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.

    7. [7]

      Some examples: (a) Kollonitsch, J.; Patchett, A. A.; Marburg, S.; Maycock, A. L.; Perkins, L. M.; Doldouras, G. A.; Duggan, D. E.; Aster, S. D. Nature 1978, 274, 906.
      (b) Mckeage, K.; Keam, S. J. Drugs 2009, 69, 1799.
      (c) Rojas, R. A.; Paluga, I.; Goldfrad, C. H.; Duggan, M. T.; Barnes, N. J. Asthma 2007, 44, 437.

    8. [8]

      For selected examples, see: (a) Liu, X.; Xu, C.; Wang, M.; Liu, Q. Chem. Rev. 2015, 115, 683.
      (b) Charpentier, J.; Fruh, N.; Togni, A. Chem. Rev. 2015, 115, 650.
      (c) Chu, L.; Qing, F.-L. Acc. Chem. Res. 2014, 47, 1513.
      (d) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214.

    9. [9]

      For selected examples, see: (a) Ni, C.; Hu, M.; Hu, J. Chem. Rev. 2015, 115, 765.
      (b) Ni, C.; Zhu, L.; Hu, J. Acta Chim. Sinica 2015, 73, 90(in Chinese).

    10. [10]

      Li, Y.; Ni, C.; Liu, J.; Zhang, L.; Zheng, J.; Zhu, L.; Hu, J. Org. Lett. 2006, 8, 1693.

    11. [11]

      Ni, C.; Li, Y.; Hu, J. J. Org. Chem. 2006, 71, 6829.

    12. [12]

      Liu, J.; Li, Y.; Hu, J. J. Org. Chem. 2007, 72, 3119.

    13. [13]

      Liu, J.; Zhang, L.; Hu, J. Org. Lett. 2008, 10, 5377.

    14. [14]

      Ni, C.; Zhang, L.; Hu, J. J. Org. Chem. 2009, 74, 3767.

    15. [15]

      Fukuzumi, T.; Shibata, N.; Sugiura, M.; Yasui, H.; Nakamura, S.; Toru, T. Angew. Chem., Int. Ed. 2006, 45, 4973.

    16. [16]

      Mizuta, S.; Shibata, N.; Goto, Y.; Furukawa, T.; Nakamura, S.; Toru, T. J. Am. Chem. Soc. 2007, 129, 6394.

    17. [17]

      Prakash, G. K. S.; Chacko, S.; Alconcel, S.; Stewart, T.; Mathew, T.; Olah, G. A. Angew. Chem., Int. Ed. 2007, 46, 4933.

    18. [18]

      Prakash, G. K. S.; Chacko, S.; Vaghoo, H.; Shao, N.; Gurung, L.; Mathew, T.; Olah, G. A. Org. Lett. 2009, 11, 1127.

    19. [19]

      Ni, C.; Hu, J.; Tetrahedron Lett. 2009, 50, 7252.

    20. [20]

      Furukawa, T.; Kawazoe, J.; Zhang, W.; Nishimine, T.; Tokunaga, E.; Matsumoto, T.; Shiro, M.; Shibata, N. Angew. Chem., Int. Ed. 2011, 50, 9684.

    21. [21]

      Matsuzaki, K.; Furukawa, T.; Tokunaga, E.; Matsumoto, T.; Shiro, M.; Shibata, N. Org. Lett. 2013, 15, 3282.

    22. [22]

      Zhu, L.; Ni, C.; Zhao, Y.; Hu, J. Tetrahedron 2010, 66, 5089.

    23. [23]

      Furukawa, T.; Goto, Y.; Kawazoe, J.; Tokunaga, E.; Nakamura, S.; Yang, Y.; Du, H.; Kakehi, A.; Shiro, M.; Shibata, N. Angew. Chem., Int. Ed. 2010, 49, 1642.

    24. [24]

      Zhao, Y.; Gao, B.; Ni, C.; Hu, J. Org. Lett. 2012, 14, 6080.

    25. [25]

      Zhao, Y.; Ni, C.; Jiang, F.; Gao, B.; Shen, X.; Hu, J. ACS Catal. 2013, 3, 631.

    26. [26]

      Geng, Y.; Liang, A. P.; Gao, X. Y.; Niu, C. S.; Li, J. Y.; Zou, D. P.; Wu, Y. S.; Wu, Y. J. J. Org. Chem. 2017, 82, 8604.

    27. [27]

      Parisi, G.; Colella, M.; Monticelli, S.; Romanazzi, G.; Holzer, W.; Langer, T.; Degennaro, L.; Pace, V.; Luisi, R. J. Am. Chem. Soc. 2017, 139, 13648.

    28. [28]

      Fujiwara, Y.; Dixon, J. A.; O'Hara, F.; Funder, E. D.; Dixon, D. D.; Rodriguez, R. A.; Baxter, R. D.; Herle, B.; Sach, N.; Collins, M. R.; Ishihara, Y; Baran, P. Nature 2012, 492, 95.

    29. [29]

      Tang, X.; Thomoson, C. S.; Dolbier Jr., W. R. Org. Lett. 2014, 16, 4594.

    30. [30]

      Tang, X.; Thomoson, C. S.; Dolbier Jr., W. R. Angew. Chem., Int. Ed. 2015, 54, 4246.

    31. [31]

      He, Z.; Tan, P.; Ni, C.; Hu, J. Org. Lett. 2015, 17, 1838.

    32. [32]

      Fu, W.-J.; Sun, Y.-N.; Li, X.-Y. Synth. Commun. 2019, 169, 7452.

    33. [33]

      (a) Li, Y.; Lu, Y.; Qiu, G.; Ding, Q. Org. Lett. 2014, 16, 4240.
      (b) Moskvina, V. S.; Khily, V. P. Chem. Heterocycl. Comp. 2019, 55, 300.
      (c) Zhang, X.; Li, Y.; Hao, X.; Jin, K.; Zhang, R.; Duan, C. Tetrahedron 2018, 74, 7358.
      (d) Chen, L.; Wu, L.; Duan, W.; Wang, T.; Li, L.; Zhang, K.; Zhu, J.; Peng, Z.; Xiong, F. J. Org. Chem. 2018, 83, 8607.
      (e) Bu, M.-J.; Lu, G.-P.; Cai, C. Catal. Commun. 2018, 114, 70.
      (f) Ni, S.-Y.; Zhou, J.; Mei, H.-B.; Han, J.-L. Tetrahedron Lett. 2018, 59, 1309.

    34. [34]

      (a) Deng, X.; Chao, H.; Chen, C.; Zhou, H.; Yu, L. Sci. Bull. 2019, 64, 1280.
      (b) Yu, L.; Huang, X. Synlett 2006, 2136.
      (c) Yu, L.; Huang, X. Synlett 2007, 1371.
      (d) Liu, M.; Li, Y.; Yu, L.; Xu, Q.; Jiang, X. Sci. China: Chem. 2018, 61, 294.

    35. [35]

      Zessin, J.; Eskola, O.; Brust, P.; Bergman, J.; Steinbach, J.; Lehikoinen, P.; Solin, O.; Johannsen, B. Nucl. Med. Biol. 2001, 28, 857.

    36. [36]

      Zhang, M. R.; Maeda, J.; Furutsuka, K.; Yoshida, Y.; Ogawa, M.; Suhara, T.; Suzuki, K. Bioorg. Med. Chem. Lett. 2003, 13, 201.

    37. [37]

      Zhang, M. R.; Ogawa, M.; Furutsuka, K.; Yoshida, Y.; Suzuki, K. J. Fluorine Chem. 2004, 125, 1879.

    38. [38]

      Zhang, W.; Zhu, L.; Hu, J. Tetrahedron 2007, 63, 10569.

    39. [39]

      Doi, H.; Ban, I.; Nonoyama, A.; Sumi, K.; Kuang, C.; Hosoya, T.; Tsukada, H.; Suzuki, M. Chem.-Eur. J. 2009, 15, 4165.

    40. [40]

      Hu, B.; Gao, L.; Li, C.; Hu, J. Org. Lett. 2015, 17, 3086.

    41. [41]

      An, L.; Xiao, Y.-L.; Min, Q.-Q.; Zhang, X. Angew. Chem., Int. Ed. 2015, 54, 9079.

    42. [42]

      Yin, H.; Sheng, J.; Zhang, K.-F.; Zhang, Z.-Q.; Bian, K.-J.; Wang, X.-S. Chem. Commun. 2019, 55, 7635.

    43. [43]

      (a) Doi, H.; Ban, I.; Nonoyama, A; Sumi, K.; Kuang, C.; Hosoya, T.; Tsukada, H.; Suzuki, M. J. Chem.-Eur. 2009, 15, 4165.
      (b) Hu, J.; Gao, B.; Li, L.; Ni, C. Org. Lett. 2015, 17, 3086.
      (c) An, L.; Xiao, Y.-L.; Zhang, X. Angew. Chem., Int. Ed. 2015, 54, 9079.

    44. [44]

      (a) Collins, B. S. L.; Wilson, C. M.; Myers, E. L.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2017, 56, 11700.
      (b) Cuenca, A. B.; Shishido, R.; Ito, H.; Fernández, E. Chem. Soc. Rev. 2017, 46, 415.
      (c) Fyfe, J. W. B.; Watson, A. J. B. New Tricks. Chem. 2017, 3, 31.
      (d) Hemming, D.; Fritzemeier, R.; Westcott, S. A.; Santos, W. L.; Steel, P. G. Chem. Soc. Rev. 2018, 47, 7477.

    45. [45]

      Wu, N.-Y.; Xu, X.-H.; Qing, F. L. ACS Catal. 2019, 9, 5726.

    46. [46]

      Cao, Y.; Jiang, L.; Yi, W. Adv. Synth. Catal. 2019, 361, 4360.

    47. [47]

      Ding, T.; Jiang, L.; Yang, J.; Xu, Y.; Wang, G.; Yi, W. Org. Lett. 2019, 21, 6025.

    48. [48]

      Olah, G. A.; Pavlath, A. Acta Chim. Acad. Sci. Hung. 1953, 3, 425.

    49. [49]

      Prakash, G. K. S.; Ledneczki, I.; Chacko, S.; Olah, G. A. Org. Lett. 2008, 10, 557.

    50. [50]

      Veliks, J.; Kazia, A. Chem.-Eur. J. 2019, 25, 3786.

    51. [51]

      Meanwell, N. A. J. Med. Chem. 2018, 61, 5822.

    52. [52]

      Melngaile, R.; Sperga, A.; Baldridge, K. K.; Veliks, J. Org. Lett. 2019, 21, 7174.

    53. [53]

      For reviews, see: (a) Okamura, H.; Bolm, C. Chem. Lett. 2004, 33, 482.
      (b) Johnson, C. R. Acc. Chem. Res. 1973, 6, 341.

    54. [54]

      For selected examples, see: (a) Shen, X.; Zhang, W.; Ni, C.; Gu, Y.; Hu, J. J. Am. Chem. Soc. 2012, 134, 16999.
      (b) Shen, X.; Zhang, W.; Zhang, L.; Luo, T.; Wan, X.; Gu, Y.; Hu, J. Angew. Chem., Int. Ed. 2012, 51, 6966.
      (c) Zhang, W.; Huang, W.; Hu, J. Angew. Chem., Int. Ed. 2009, 48, 9858.
      (d) Zhang, W.; Wang, F.; Hu, J. Org. Lett. 2009, 11, 2109.

    55. [55]

      Nomura, Y.; Tokunaga, E.; Shibata, N. Angew. Chem., Int. Ed. 2011, 50, 1885.

    56. [56]

      Yang, Y.-D.; Lu, X.; Liu, G.; Tokunaga, E.; Tsuzuki, S.; Shibata, N. ChemistryOpen 2012, 1, 221.

    57. [57]

      Shen, X.; Zhou, M.; Ni, C.; Zhang, W.; Hu, J. Chem. Sci. 2014, 5, 117.

    58. [58]

      Noto, N.; Koike, T.; Akita, M. ACS Catal. 2019, 9, 4382.

    59. [59]

      Liu, Y.; Lu, L.; Shen, Q. Angew. Chem., Int. Ed. 2017, 56, 9930.

    60. [60]

      Prakash, G. K. S.; Zhao, X.; Chacko, S.; Wang, F.; Vaghoo, H.; Olah, G. A. J. Fluorine Chem. 2008, 129, 1036.

    61. [61]

      Sun, X.; Yu, S. Org. Lett. 2014, 16, 2938.

    62. [62]

      Su, Y.-M.; Feng, G.-S.; Wang, Z.-Y.; L, Q.; Wang, X.-S. Angew. Chem., Int. Ed. 2015, 54, 6003.

    63. [63]

      Ruan, Z.; Zhang, S.-K.; Zhu, C.; Ruth, P. N.; Stalke, D.; Ackermann, L. Angew. Chem., Int. Ed. 2017, 56, 2045.

    64. [64]

      Tang, W.-K.; Feng, Y.-S.; Xu, Z.-W.; Cheng, Z.-F.; Xu, J.; Dai, J.-J.; Xu, H.-J. Org. Lett. 2017, 19, 5501.

    65. [65]

      Huang, H.; Jia, K.; Chen, Y. Angew. Chem., Int. Ed. 2015, 54, 1881.

    66. [66]

      (a) Jadhav, S. D.; Bakshi, D.; Singh, A. J. Org. Chem. 2015, 80, 10187.
      (b) Majek, M.; Jacobi von Wangelin, A. Acc. Chem. Res. 2016, 49, 2316.
      (c) Meyer, A. U.; Slanina, T.; Yao, C.-J.; König, B. ACS Catal. 2016, 6, 369.
      (d) Neumann, M.; Fuldner, S.; Konig, B.; Zeitler, K. Angew. Chem., Int. Ed. 2011, 50, 951.
      (e) Yu, C.; Iqbal, N.; Park, S.; Cho, E. J. Chem. Commun. 2014, 50, 12884.

    67. [67]

      Tang, W.-K.; Xu, Z.-W.; Xu, J.; Tang, F.; Li, X.-X.; Dai, J.-J.; Xu, H.-J.; Feng, Y.-S. Org. Lett. 2019, 21, 196.

    68. [68]

      (a) Weiss, M. E.; Kreis, L. M.; Lauber, A.; Carreira, E. M. Angew. Chem. 2011, 123, 11321.
      (b) Kreis, L. M.; Krautwald, S.; Pfeiffer, N.; Martin, R. E.; Carreira, E. M. Org. Lett. 2013, 15, 1634.

    69. [69]

      (a) Koide, T.; Aritome, I.; Saeki, T.; Morita, Y.; Shiota, Y.; Yoshizawa, K.; Shimakoshi, H.; Hisaeda, Y. ACS Omega 2018, 3, 4027.
      (b) Tada, M.; Kaneko, K. J. Org. Chem. 1995, 60, 6635.

    70. [70]

      (a) Gupta, B. D.; Roy, S. Inorg. Chim. Acta 1988, 146, 209.
      (b) Giese, B.; Hartung, J.; He, J.; Huter, O.; Koch, A. Angew. Chem. 1989, 101, 334.

    71. [71]

      Okabe, M.; Abe, M.; Tada, M. J. Org. Chem. 1982, 47, 1775.

    72. [72]

      (a) Xia, X.-D.; Ren, Y.-L.; Chen, J.-R.; Yu, X.-L.; Lu, L.-Q.; Zou, Y.-Q.; Wan, J.; Xiao, W.-J. Chem.-Asian. J. 2015, 10, 124.
      (b) Hu, X.-Q.; Chen, J.-R.; Wei, Q.; Liu, F.-L.; Deng, Q.-H.; Beauche-min, A. M.; Xiao, W.-L. Angew. Chem., Int. Ed. 2014, 53, 12163.
      (c)Ding, W.; Zhou, Q.-Q.; Xuan, J.; Li, T.-R.; Lu, L.-Q.; Xiao, W.-J. Tetrahedron Lett. 2014, 55, 4648.

    73. [73]

      Some examples: (a) Wang, L.; Wei, X.; Jia, W.; Zhong, J.; Wu, L.-Z.; Liu, Q. Org. Lett. 2014, 16, 5842.
      (b) Jung, J.; Kim, E.; You, Y.; Cho, E. J. Adv. Synth. Catal. 2014, 356, 2741.
      (c) Su, Y. M.; Hou, Y.; Yin, F.; Xu, Y. M.; Li, Y.; Zheng, X.; Wang, X. S. Org. Lett. 2014, 16, 2958.

    74. [74]

      Li, W.; Zhu, Y.; Duan, Y.; Zhang, M.; Zhu, C. Adv. Synth. Catal. 2015, 357, 1277.

    75. [75]

      Zhao, Q.; Lu, L.; Shen, Q. Angew. Chem., Int. Ed. 2017, 56, 11575.

    76. [76]

      Liu, F.; Jiang, L.; Qiu, H.; Yi, W. Org. Lett. 2018, 20, 6270.

  • 加载中
    1. [1]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    2. [2]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    3. [3]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    4. [4]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    5. [5]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    6. [6]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    7. [7]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    8. [8]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    9. [9]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    10. [10]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    11. [11]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    12. [12]

      Shahua Huang Xiaoming Guo Lin Lin Guangping Chang Sheng Han Zuxin Zhou . Application of “Integration of Industry and Education” in Engineering Chemistry: Improvement of the Pesticide Fipronil Production. University Chemistry, 2024, 39(3): 199-204. doi: 10.3866/PKU.DXHX202309064

    13. [13]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    14. [14]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    15. [15]

      Wen Jiang Jieli Lin Zhongshu Li . 低配位含磷官能团的研究进展. University Chemistry, 2025, 40(8): 138-151. doi: 10.12461/PKU.DXHX202409144

    16. [16]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    17. [17]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    18. [18]

      Junjie TANGYunting ZHANGZhengjiang LIUJiani WU . Preparation of CeO2 by starch template method for photo-Fenton degradation of methyl orange. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1617-1631. doi: 10.11862/CJIC.20240420

    19. [19]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    20. [20]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

Metrics
  • PDF Downloads(88)
  • Abstract views(3254)
  • HTML views(863)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return