Citation: Wu Jinghua, Wang Cheng, Chen Pengquan, Ma Zhiqiang. Synthetic Progress of Natural Products Gracilioethers and Hippolachnin A[J]. Chinese Journal of Organic Chemistry, ;2020, 40(10): 3289-3299. doi: 10.6023/cjoc202003014 shu

Synthetic Progress of Natural Products Gracilioethers and Hippolachnin A

  • Corresponding author: Ma Zhiqiang, cezqma@scut.edu.cn
  • Received Date: 6 March 2020
    Revised Date: 8 April 2020
    Available Online: 17 April 2020

    Fund Project: the National Program on Key Research Project 2016YFA0602900the National Natural Science Foundation of China 21871098the National Natural Science Foundation of China 21672073Project supported by the National Program on Key Research Project (No. 2016YFA0602900), the Science and Technology Program of Guangzhou City (No. 201707010073) and the National Natural Science Foundation of China (Nos. 21672073, 21871098)the Science and Technology Program of Guangzhou City 201707010073

Figures(13)

  • Gracilioethers and hippolachnin A were isolated from marine sponge. Gracilioethers showed antimalarial activity while hippolachnin A exhibited strong antifungal activity. Their fascinating structures and outstanding biological activities have attracted attentions from chemists. Progress on the synthesis of gracilioethers with tricyclic skeleton and hippolachnin A are reviewed in terms of the key strategies employed.
  • 加载中
    1. [1]

      Cragg, G. M.; Newman, D. J. Biochim. Biophys. Acta, Gen. Subj. 2013, 1830, 3670.  doi: 10.1016/j.bbagen.2013.02.008

    2. [2]

      Ueoka, R.; Nakao, Y.; Kawatsu, S.; Yaegashi, J.; Matsumoto, Y.; Matsunaga, S.; Furihata, K.; Soest, R. W. M. V.; Fusetani, N. J. Org. Chem. 2009, 74, 4203.  doi: 10.1021/jo900380f

    3. [3]

      Festa, C.; Lauro, G.; De Marino, S.; D'Auria, M. V.; Monti, M. C.; Casapullo, A.; D'Amore, C.; Renga, B.; Mencarelli, A.; Petek, S.; Bifulco, G.; Fiorucci, S.; Zampella, A. J. Med. Chem. 2012, 55, 8303.  doi: 10.1021/jm300911g

    4. [4]

      (a) Festa, S.; De Marino, S.; D'Auria, M. V.; Deharo, E.; Gonzalez, G.; Deyssard, C.; Petek, S.; Bifulco, G.; Zampella, A. Tetrahedron 2012, 68, 10157.
      (b) Festa, C.; D'Amore, C.; Renga, B.; Lauro, G.; De Marino, S.; D'Auria, M. V.; Bifulco, G.; Zampella, A.; Fiorucci, S. Mar. Drugs 2013, 11, 2314.

    5. [5]

      Piao, S.; Song, Y.; Jiao, W.; Yang, F.; Liu, X.; Chen, W.; Han, B.; Lin, H. Org. Lett. 2013, 15, 3526.  doi: 10.1021/ol400933x

    6. [6]

      (a) Lee-Ruff, E.; Mladenova, G. Chem. Rev. 2003, 103, 1449.
      (b) Poplata, S.; Tröster, A.; Zou, Y.-Q.; Bach, T. Chem. Rev. 2016, 116, 9748.
      (c) Salomon, R. G. Tetrahedron 1983, 39, 485.

    7. [7]

      Rasik, C. M.; Brown, M. K. Angew. Chem., Int. Ed. 2014, 53, 14522.  doi: 10.1002/anie.201408055

    8. [8]

      Ruider, S. A.; Sandmeier, T.; Carreira, E. M. Angew. Chem., Int. Ed. 2015, 54, 2378.  doi: 10.1002/anie.201410419

    9. [9]

      Ruider, S. A.; Carreira, E. M. Org. Lett. 2016, 18, 220.  doi: 10.1021/acs.orglett.5b03356

    10. [10]

      McCallum, M. E.; Rasik, C. M.; Wood, J. L.; Brown, M. K. J. Am. Chem. Soc. 2016, 138, 2437.  doi: 10.1021/jacs.5b13586

    11. [11]

      Xu, Z. J.; Wu, Y. Chem.-Eur. J. 2017, 23, 2026.  doi: 10.1002/chem.201605776

    12. [12]

      Li, Q.; Zhao, K.; Peuronen, A.; Rissanen, K.; Enders, D.; Tang, Y. J. Am. Chem. Soc. 2018, 140, 1937.  doi: 10.1021/jacs.7b12903

    13. [13]

      Shen, X.; Peng, X.; Wong, H. N. C. Org. Lett. 2016, 18, 1032.  doi: 10.1021/acs.orglett.6b00161

    14. [14]

      Winter, N.; Trauner, D. J. Am. Chem. Soc. 2017, 139, 11706.  doi: 10.1021/jacs.7b06815

    15. [15]

      Datta, R.; Ghosh, S. J. Org. Chem. 2017, 82, 7675.  doi: 10.1021/acs.joc.7b01179

    16. [16]

      (a) Rasik, C. M.; Brown M. K. J. Am. Chem. Soc. 2013, 135, 1673.
      (b) Rasik, C. M.; Brown, M. K. Synlett 2014, 760.
      (c) Wang, Y.; Wei, D.; Li, Z.; Zhu, Y.; Tang, M. J. Phys. Chem. A 2014, 118, 4288.
      (d) Rasik, C. M.; Hong, Y. J.; Tantillo, D. J.; Brown, M. K. Org. Lett. 2014, 16, 5168.
      (e) Huston, R.; Rey, M.; Dreiding, A. S. Helv. Chim. Acta 1982, 65, 1563.
      (f) Nelson, S. G.; Dura, R. D.; Peelen, T. J. Org. React. 2012, 82, 471.
      (g) Loebach, J. L.; Bennett, D. M.; Danheiser, R. L. J. Org. Chem. 1998, 63, 8380.

    17. [17]

      (a) Godula, K. Science 2006, 312, 67.
      (b) Gutekunst, W. R.; Baran, P. S. Chem. Soc. Rev. 2011, 40, 1976.
      (c) Newhouse, T.; Baran, P. S. Angew. Chem., Int. Ed. 2011, 50, 3362.

    18. [18]

      (a) Chen, M. S.; White, M. C. Science 2007, 318, 783.
      (b) Bigi, M. A.; Reed, S. A.; White, M. C. J. Am. Chem. Soc. 2012, 134, 9721.
      (c) Shi, G.; Zhang, Y. Adv. Synth. Catal. 2014, 356, 1419.

    19. [19]

      (a) Song, L.; Yao, H.; Zhu, L.; Tong, R. Org. Lett. 2013, 15, 6.
      (b) Noyori, R.; Tomino, I.; Yamada, M.; Nishizawa, M. J. Am. Chem. Soc. 1984, 106, 6717.

    20. [20]

      (a) Dias, E. L.; Brookhart, M.; White, P. S. Chem. Commun. 2001, 423.
      (b) Gao, H.; Zhang, J. Chem.-Eur. J. 2012, 18, 2777.

    21. [21]

      (a) Smith, C. D. J. Am. Chem. Soc. 1966, 88, 4273.
      (b) Tabushi, I.; Yamamura, K.; Yoshida, Z. J. Am. Chem. Soc. 1972, 94, 787.
      (c) Petrov, V. A.; Vasil'ev, N. V. Curr. Org. Synth. 2006, 3, 215.

    22. [22]

      (a) Osberger, T. J.; White, M. C. J. Am. Chem. Soc. 2014, 136, 11176.
      (b) Ammann, S. E.; Rice, G. T.; White, M. C. J. Am. Chem. Soc. 2014, 136, 10834.
      (c) Malik, M.; Witkowski, G.; Jaroz, S. Org. Lett. 2014, 16, 3816.
      (d) White, M. C. J. Am. Chem. Soc. 2013, 135, 14052.

    23. [23]

      Morrill, L. A.; Susick, R. B.; Chari, J. V.; Garg, N. K. J. Am. Chem. Soc. 2019, 141, 12423.  doi: 10.1021/jacs.9b05588

    24. [24]

      Kiyama, M.; Isoda, Y.; Nishimoto, M.; Kobayashi, A.; Togawa, D.; Hirao, N.; Kuboki, A.; Ohira, S.; Tetrahedron Lett. 2005, 46, 7483.  doi: 10.1016/j.tetlet.2005.09.011

    25. [25]

      Fu, C.; Ma, S. Eur. J. Org. Chem. 2005, 2005, 3942.  doi: 10.1002/ejoc.200500296

    26. [26]

      (a) Blay, G.; Garcia, B.; Molina, E.; Pedro, J. R. Org. Lett. 2005, 7, 3291.
      (b) Paquette, L. A.; Green, K. E.; Gleiter, R.; Schäfer, W.; Gallucci, J. C. J. Am. Chem. Soc. 1984, 106, 8232.

    27. [27]

      Dauben, W. G.; Koch, K.; Smith, S. L.; Chapman, O. L. J. Am. Chem. Soc. 1963, 85, 2616.  doi: 10.1021/ja00900a021

    28. [28]

      Reetz, M. T.; Chatziiosifidis, I.; Schwellnus, K. Angew. Chem. 1981, 93, 716.  doi: 10.1002/ange.19810930837

    29. [29]

      (a) RajanBabu, T. V.; Nugent, W. A. J. Am. Chem. Soc. 1994, 116, 986.
      (b) RajanBabu, T. V.; Nugent, W. A.; Beattie, M. S. J. Am. Chem. Soc. 1990, 112, 6408.
      (c) RajanBabu, T. V.; Nugent, W. A. J. Am. Chem. Soc. 1989, 111, 4525.
      (d) Nugent, W. A.; RajanBabu, T. V. J. Am. Chem. Soc. 1988, 110, 8561.

  • 加载中
    1. [1]

      Tao Yang Kaijiao Duan Siyu Li Jing Wei Qingdi Yang Qian Wang . A Comprehensive and Innovative Chemical Experimental Teaching: Extraction and Identification of Tea Polyphenols from Pu'er Tea and the Application in Hand Cream Making. University Chemistry, 2024, 39(8): 270-275. doi: 10.3866/PKU.DXHX202312040

    2. [2]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    3. [3]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    4. [4]

      Zhonghong Yan Chunxia Li Ruolin Yang . Analysis of the Use and Effectiveness of Concept Mapping Assignments in English Medium Instruction of General Chemistry. University Chemistry, 2025, 40(4): 224-231. doi: 10.12461/PKU.DXHX202405138

    5. [5]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    6. [6]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    7. [7]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    8. [8]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    9. [9]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    10. [10]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    11. [11]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    12. [12]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    13. [13]

      Hongyan Chen Yajun Hou Shui Hu Zhuoxun Wei Fang Zhu Chengyong Su . Construction of Synthetic Chemistry Experiment of the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 58-63. doi: 10.12461/PKU.DXHX202409109

    14. [14]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    15. [15]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    16. [16]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    17. [17]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    18. [18]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    19. [19]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    20. [20]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

Metrics
  • PDF Downloads(15)
  • Abstract views(1792)
  • HTML views(351)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return