Citation: Wu Jinghua, Wang Cheng, Chen Pengquan, Ma Zhiqiang. Synthetic Progress of Natural Products Gracilioethers and Hippolachnin A[J]. Chinese Journal of Organic Chemistry, ;2020, 40(10): 3289-3299. doi: 10.6023/cjoc202003014 shu

Synthetic Progress of Natural Products Gracilioethers and Hippolachnin A

  • Corresponding author: Ma Zhiqiang, cezqma@scut.edu.cn
  • Received Date: 6 March 2020
    Revised Date: 8 April 2020
    Available Online: 17 April 2020

    Fund Project: the National Program on Key Research Project 2016YFA0602900the National Natural Science Foundation of China 21871098the National Natural Science Foundation of China 21672073Project supported by the National Program on Key Research Project (No. 2016YFA0602900), the Science and Technology Program of Guangzhou City (No. 201707010073) and the National Natural Science Foundation of China (Nos. 21672073, 21871098)the Science and Technology Program of Guangzhou City 201707010073

Figures(13)

  • Gracilioethers and hippolachnin A were isolated from marine sponge. Gracilioethers showed antimalarial activity while hippolachnin A exhibited strong antifungal activity. Their fascinating structures and outstanding biological activities have attracted attentions from chemists. Progress on the synthesis of gracilioethers with tricyclic skeleton and hippolachnin A are reviewed in terms of the key strategies employed.
  • 加载中
    1. [1]

      Cragg, G. M.; Newman, D. J. Biochim. Biophys. Acta, Gen. Subj. 2013, 1830, 3670.  doi: 10.1016/j.bbagen.2013.02.008

    2. [2]

      Ueoka, R.; Nakao, Y.; Kawatsu, S.; Yaegashi, J.; Matsumoto, Y.; Matsunaga, S.; Furihata, K.; Soest, R. W. M. V.; Fusetani, N. J. Org. Chem. 2009, 74, 4203.  doi: 10.1021/jo900380f

    3. [3]

      Festa, C.; Lauro, G.; De Marino, S.; D'Auria, M. V.; Monti, M. C.; Casapullo, A.; D'Amore, C.; Renga, B.; Mencarelli, A.; Petek, S.; Bifulco, G.; Fiorucci, S.; Zampella, A. J. Med. Chem. 2012, 55, 8303.  doi: 10.1021/jm300911g

    4. [4]

      (a) Festa, S.; De Marino, S.; D'Auria, M. V.; Deharo, E.; Gonzalez, G.; Deyssard, C.; Petek, S.; Bifulco, G.; Zampella, A. Tetrahedron 2012, 68, 10157.
      (b) Festa, C.; D'Amore, C.; Renga, B.; Lauro, G.; De Marino, S.; D'Auria, M. V.; Bifulco, G.; Zampella, A.; Fiorucci, S. Mar. Drugs 2013, 11, 2314.

    5. [5]

      Piao, S.; Song, Y.; Jiao, W.; Yang, F.; Liu, X.; Chen, W.; Han, B.; Lin, H. Org. Lett. 2013, 15, 3526.  doi: 10.1021/ol400933x

    6. [6]

      (a) Lee-Ruff, E.; Mladenova, G. Chem. Rev. 2003, 103, 1449.
      (b) Poplata, S.; Tröster, A.; Zou, Y.-Q.; Bach, T. Chem. Rev. 2016, 116, 9748.
      (c) Salomon, R. G. Tetrahedron 1983, 39, 485.

    7. [7]

      Rasik, C. M.; Brown, M. K. Angew. Chem., Int. Ed. 2014, 53, 14522.  doi: 10.1002/anie.201408055

    8. [8]

      Ruider, S. A.; Sandmeier, T.; Carreira, E. M. Angew. Chem., Int. Ed. 2015, 54, 2378.  doi: 10.1002/anie.201410419

    9. [9]

      Ruider, S. A.; Carreira, E. M. Org. Lett. 2016, 18, 220.  doi: 10.1021/acs.orglett.5b03356

    10. [10]

      McCallum, M. E.; Rasik, C. M.; Wood, J. L.; Brown, M. K. J. Am. Chem. Soc. 2016, 138, 2437.  doi: 10.1021/jacs.5b13586

    11. [11]

      Xu, Z. J.; Wu, Y. Chem.-Eur. J. 2017, 23, 2026.  doi: 10.1002/chem.201605776

    12. [12]

      Li, Q.; Zhao, K.; Peuronen, A.; Rissanen, K.; Enders, D.; Tang, Y. J. Am. Chem. Soc. 2018, 140, 1937.  doi: 10.1021/jacs.7b12903

    13. [13]

      Shen, X.; Peng, X.; Wong, H. N. C. Org. Lett. 2016, 18, 1032.  doi: 10.1021/acs.orglett.6b00161

    14. [14]

      Winter, N.; Trauner, D. J. Am. Chem. Soc. 2017, 139, 11706.  doi: 10.1021/jacs.7b06815

    15. [15]

      Datta, R.; Ghosh, S. J. Org. Chem. 2017, 82, 7675.  doi: 10.1021/acs.joc.7b01179

    16. [16]

      (a) Rasik, C. M.; Brown M. K. J. Am. Chem. Soc. 2013, 135, 1673.
      (b) Rasik, C. M.; Brown, M. K. Synlett 2014, 760.
      (c) Wang, Y.; Wei, D.; Li, Z.; Zhu, Y.; Tang, M. J. Phys. Chem. A 2014, 118, 4288.
      (d) Rasik, C. M.; Hong, Y. J.; Tantillo, D. J.; Brown, M. K. Org. Lett. 2014, 16, 5168.
      (e) Huston, R.; Rey, M.; Dreiding, A. S. Helv. Chim. Acta 1982, 65, 1563.
      (f) Nelson, S. G.; Dura, R. D.; Peelen, T. J. Org. React. 2012, 82, 471.
      (g) Loebach, J. L.; Bennett, D. M.; Danheiser, R. L. J. Org. Chem. 1998, 63, 8380.

    17. [17]

      (a) Godula, K. Science 2006, 312, 67.
      (b) Gutekunst, W. R.; Baran, P. S. Chem. Soc. Rev. 2011, 40, 1976.
      (c) Newhouse, T.; Baran, P. S. Angew. Chem., Int. Ed. 2011, 50, 3362.

    18. [18]

      (a) Chen, M. S.; White, M. C. Science 2007, 318, 783.
      (b) Bigi, M. A.; Reed, S. A.; White, M. C. J. Am. Chem. Soc. 2012, 134, 9721.
      (c) Shi, G.; Zhang, Y. Adv. Synth. Catal. 2014, 356, 1419.

    19. [19]

      (a) Song, L.; Yao, H.; Zhu, L.; Tong, R. Org. Lett. 2013, 15, 6.
      (b) Noyori, R.; Tomino, I.; Yamada, M.; Nishizawa, M. J. Am. Chem. Soc. 1984, 106, 6717.

    20. [20]

      (a) Dias, E. L.; Brookhart, M.; White, P. S. Chem. Commun. 2001, 423.
      (b) Gao, H.; Zhang, J. Chem.-Eur. J. 2012, 18, 2777.

    21. [21]

      (a) Smith, C. D. J. Am. Chem. Soc. 1966, 88, 4273.
      (b) Tabushi, I.; Yamamura, K.; Yoshida, Z. J. Am. Chem. Soc. 1972, 94, 787.
      (c) Petrov, V. A.; Vasil'ev, N. V. Curr. Org. Synth. 2006, 3, 215.

    22. [22]

      (a) Osberger, T. J.; White, M. C. J. Am. Chem. Soc. 2014, 136, 11176.
      (b) Ammann, S. E.; Rice, G. T.; White, M. C. J. Am. Chem. Soc. 2014, 136, 10834.
      (c) Malik, M.; Witkowski, G.; Jaroz, S. Org. Lett. 2014, 16, 3816.
      (d) White, M. C. J. Am. Chem. Soc. 2013, 135, 14052.

    23. [23]

      Morrill, L. A.; Susick, R. B.; Chari, J. V.; Garg, N. K. J. Am. Chem. Soc. 2019, 141, 12423.  doi: 10.1021/jacs.9b05588

    24. [24]

      Kiyama, M.; Isoda, Y.; Nishimoto, M.; Kobayashi, A.; Togawa, D.; Hirao, N.; Kuboki, A.; Ohira, S.; Tetrahedron Lett. 2005, 46, 7483.  doi: 10.1016/j.tetlet.2005.09.011

    25. [25]

      Fu, C.; Ma, S. Eur. J. Org. Chem. 2005, 2005, 3942.  doi: 10.1002/ejoc.200500296

    26. [26]

      (a) Blay, G.; Garcia, B.; Molina, E.; Pedro, J. R. Org. Lett. 2005, 7, 3291.
      (b) Paquette, L. A.; Green, K. E.; Gleiter, R.; Schäfer, W.; Gallucci, J. C. J. Am. Chem. Soc. 1984, 106, 8232.

    27. [27]

      Dauben, W. G.; Koch, K.; Smith, S. L.; Chapman, O. L. J. Am. Chem. Soc. 1963, 85, 2616.  doi: 10.1021/ja00900a021

    28. [28]

      Reetz, M. T.; Chatziiosifidis, I.; Schwellnus, K. Angew. Chem. 1981, 93, 716.  doi: 10.1002/ange.19810930837

    29. [29]

      (a) RajanBabu, T. V.; Nugent, W. A. J. Am. Chem. Soc. 1994, 116, 986.
      (b) RajanBabu, T. V.; Nugent, W. A.; Beattie, M. S. J. Am. Chem. Soc. 1990, 112, 6408.
      (c) RajanBabu, T. V.; Nugent, W. A. J. Am. Chem. Soc. 1989, 111, 4525.
      (d) Nugent, W. A.; RajanBabu, T. V. J. Am. Chem. Soc. 1988, 110, 8561.

  • 加载中
    1. [1]

      Tao Yang Kaijiao Duan Siyu Li Jing Wei Qingdi Yang Qian Wang . A Comprehensive and Innovative Chemical Experimental Teaching: Extraction and Identification of Tea Polyphenols from Pu'er Tea and the Application in Hand Cream Making. University Chemistry, 2024, 39(8): 270-275. doi: 10.3866/PKU.DXHX202312040

    2. [2]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    3. [3]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    4. [4]

      Zhuomin Zhang Lanrui Yang Baorong Zhang Gongke Li . 化学分析全英课程思政建设初探. University Chemistry, 2025, 40(8): 58-65. doi: 10.12461/PKU.DXHX202410010

    5. [5]

      Zhonghong Yan Chunxia Li Ruolin Yang . Analysis of the Use and Effectiveness of Concept Mapping Assignments in English Medium Instruction of General Chemistry. University Chemistry, 2025, 40(4): 224-231. doi: 10.12461/PKU.DXHX202405138

    6. [6]

      Weizhi Wang Jieling Qin Jie Cao . 仪器分析全英语课程设置的必要性与思政教育实践融合. University Chemistry, 2025, 40(8): 117-123. doi: 10.12461/PKU.DXHX202410067

    7. [7]

      Peihong Fan Hongxiang Lou . 研究生高等天然药物化学课程的教学改革探索——导学互促式混合课堂教学与自主学习能力培养. University Chemistry, 2025, 40(6): 16-21. doi: 10.12461/PKU.DXHX202407078

    8. [8]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    9. [9]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    10. [10]

      Hui Wang Yiwen Zhang Dong Liu . “三全育人”理念下培养应用型创新人才——以“赛教结合”模式为例的探索与实践. University Chemistry, 2025, 40(6): 37-42. doi: 10.12461/PKU.DXHX202407091

    11. [11]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    12. [12]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    13. [13]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    14. [14]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    15. [15]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    16. [16]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    17. [17]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    18. [18]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    19. [19]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    20. [20]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

Metrics
  • PDF Downloads(16)
  • Abstract views(1915)
  • HTML views(358)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return