Citation: Kong Qingshan, Li Xinglong, Xu Huajian, Fu Yao. Study on Reaction of γ-Valerolactone and Amine Catalyzed by Zirconium-Based Lewis Acids[J]. Chinese Journal of Organic Chemistry, ;2020, 40(7): 2062-2070. doi: 10.6023/cjoc202003008 shu

Study on Reaction of γ-Valerolactone and Amine Catalyzed by Zirconium-Based Lewis Acids

  • Corresponding author: Xu Huajian, hjxu@hfut.edu.cn Fu Yao, fuyao@ustc.edu.cn
  • Received Date: 8 March 2020
    Revised Date: 2 April 2020
    Available Online: 17 April 2020

    Fund Project: Project supported by the National Key Research and Development Program of China (No. 2018YFB1501604), the National Natural Science Foundation of China (No. 21472033), the Key Research and Development Program Projects in Anhui Province (No. 201904a07020069), and the Fundamental Research Funds for the Central Universitiesthe Key Research and Development Program Projects in Anhui Province No. 201904a07020069the National Natural Science Foundation of China  (No. 21472033the National Key Research and Development Program of China No. 2018YFB1501604

Figures(3)

  • γ-Valerolactone (GVL) is an important biomass platform molecule, it can be converted into high value-added chemicals and fuel, which has important application prospects. This article describes a method for the synthesis of hydroxyamides and pyrrolidones from GVL and amine compounds by reductive amination/cyclization reactions under mild conditions using zirconium-based Lewis acid catalysts Zr-P-O and ZrOCl2·8H2O, respectively. In particular, a moderately high product yield can be obtained with the absence of a solvent. This method further lays the foundation for the application research of GVL.
  • 加载中
    1. [1]

    2. [2]

      (a) Paul, S. F. US 5697987, 1997.
      (b) Serrano-Ruiz, J. C.; Wang, D.; Dumesic, J. A. Green Chem.2010, 12, 574.

    3. [3]

      Geilen, F. M.; Engendahl, B.; Harwardt, A.; Marquardt, W.; Klankermayer, J.; Leitner, W. Angew. Chem., Int. Ed. 2010, 49, 5510.

    4. [4]

      Mehdi, H.; Fábos, V.; Tuba, R.; Bodor, A.; Mika, L. T.; Horváth, I.T. Top. Catal. 2008, 48, 49.

    5. [5]

      Lange, J. P.; Price, R.; Ayoub, P. M.; Louis, J.; Petrus, L.; Clarke, L.; Gosselink, H. Angew. Chem., Int. Ed. 2010, 49, 4479.

    6. [6]

      (a) Bond, J. Q.; Alonso, D. M.; Wang, D.; West, R. M.; Dumesic, J.A. Science 2010, 327, 1110.
      (b) Bond, J. Q.; Martin Alonso, D.; West, R. M.; Dumesic, J. A.Langmuir 2010, 26, 16291.

    7. [7]

      Lange, J. P.; Vestering, J. Z.; Haan, R. J. Chem. Commun. 2007, 33, 3488.

    8. [8]

      (a) Fieser, M.; Fieser, L. F.; Toromanoff, E.; Hirata, Y.; Heymann, H.; Tefft, M.; Bhattacharya, S. J. Am. Chem. Soc. 1956, 78, 2825.
      (b) Newkome, G. R.; Baker, G. R.; Saunders, M.J.; Russo, P. S.; Gupta, V. K.; Yao, Z.; Miller, J. E.; Bouillion, K. J. Am. Chem. Soc.1986, 108, 752.
      (c) Newkome, G. R.; Yao, Z.; Baker, G. R.; Gupta, V. K.; Russo, P.S.; Saunders, M. J. J. Am. Chem. Soc. 1986, 108, 849.

    9. [9]

      (a) Rodgers, S. J.; Ng, C. Y.; Raymond, K. N. J. Am. Chem. Soc.1985, 107, 4094.
      (b) Collins, T. J.; Coots, R. J.; Furutani, T. T.; Keech, J. T.; Peake, G. T.; Santarsiero, B. D. J. Am. Chem. Soc. 1986, 108, 5333.

    10. [10]

      Tietze, L. F.; Brand, S.; Pfeiffer, T. Angew. Chem., Int. Ed. 1985, 24, 784.

    11. [11]

    12. [12]

      (a) Gresham, T. L.; Jansen, J. E.; Shaver, F. W.; Bankert, R. A.; Fiedorek, F. T. J. Am. Chem. Soc. 1951, 73, 3168.
      (b) Guo, W.; Gómez, J. E.; Martínez-Rodríguez, L.; Bandeira, N.A.; Bo, C.; Kleij, A. W. ChemSusChem 2017, 10, 1969.

    13. [13]

      (a) Matsumoto, K.; Hashimoto, S.; Okamoto, T.; Otani, S.; Hayami, J. I. Chem. Lett. 1987, 16, 803.
      (b) Matsumoto, K.; Hashimoto, S.; Uchida, T.; Okamoto, T.; Otani, S. B. Chem. Soc. Jpn. 1989, 62, 3138.

    14. [14]

      Chalid, M.; Heeres, H. J.; Broekhuis, A. A. J. Appl. Polym. Sci.2012, 123, 3556.

    15. [15]

      (a) Das, S.; Addis, D.; Knöpke, L. R.; Bentrup, U.; Junge, K.; Brückner, A.; Beller, M. Angew. Chem., Int. Ed. 2011, 50, 9180.
      (b) Lei, A.; Waldkirch, J. P.; He, M.; Zhang, X. Angew. Chem., Int.Ed. 2002, 41, 4526.
      (c) Du, X. L.; He, L.; Zhao, S.; Liu, Y. M.; Cao, Y.; He, H. Y.; Fan, K. N. Angew. Chem., Int. Ed. 2011, 123, 7961.
      (d) Gao, G.; Sun, P.; Li, Y.; Wang, F.; Zhao, Z.; Qin, Y.; Li, F. ACS Catal. 2017, 7, 4927.

    16. [16]

      (a) Huang, Y.-B.; Dai, J.-J.; Deng, X.-J.; Qu, Y.-C.; Guo, Q.-X.; Fu, Y. ChemSusChem 2011, 4, 1578.
      (b) Touchy, A. S.; Hakim Siddiki, S. M. A.; Kon, K.; Shimizu, K.-I.ACS Catal. 2014, 4, 3045.
      (c) Vidal, J. D.; Climent, M. J.; Concepcion, P.; Corma, A.; Iborra, S.; Sabater, M. J. ACS Catal. 2015, 5, 5812.
      (d) Wei, Y.; Wang, C.; Jiang, X.; Xue, D.; Li, J.; Xiao, J.Chem.Commun. 2013, 49, 5408.
      (e) Sun, Z.; Chen, J.; Tu, T. Green Chem. 2017, 19, 789.
      (f) Ledoux, A.; Sandjong Kuigwa, L.; Framery, E.; Andrioletti, B.Green Chem. 2015, 17, 3251.
      (g) Du, X.-L.; He, L.; Zhao, S.; Liu, Y.-M.; Cao, Y.; He, H.-Y.; Fan, K.-N. Angew. Chem., Int. Ed. 2011, 50, 7815.
      (h) Ogiwara, Y.; Uchiyama, T.; Sakai, N. Angew. Chem., Int. Ed.2016, 55, 1864.

    17. [17]

      (a) Mansoor, S. S.; Aswin, K.; Logaiya, K.; Sudhan, S. P. N. J.Saudi Chem. Soc. 2016, 20, 138.
      (b) Singh, R.; Jakhar, K.; Sharma, P. Chem. Sci. 2017, 6, 135.
      (c) Han, L.; Zhou, Z. Appl. Organomet. Chem. 2019, 33, e4755.

    18. [18]

      Shi, M. S.; Cui, C.; Yin, W. P. Eur. J. Org. Chem. 2005, 11, 2379.

    19. [19]

      Ghosh, R.; Maiti, S.; Chakraborty, A. Tetrahedron Lett. 2005, 46, 147.

    20. [20]

      Sun, H. B.; Hua, R.M.; Yin, Y. W. Molecules 2006, 11, 263.

    21. [21]

      Firouzabadi, H.; Iranpoor, N.; Jafarpour, M.; Ghaderi, A. J. Mol.Catal., A: Chem. 2006, 252, 150.

    22. [22]

      Eftekhari-Sis, B.; Abdollahifar, A.; Hashemi, M. M.; Zirak, M. Eur.J. Org. Chem. 2006, 22, 5152.

    23. [23]

      Zhang, Z. H.; Li, T. S.; Li, J. J. Catal. Commun. 2007, 8, 1615.

    24. [24]

      Bhagat, S.; Chakraborti, A. K. J. Org. Chem. 2008, 73, 6029.

    25. [25]

      Shen, W. L.; Wang, M.; Feng, J. J.; Tian, H. Tetrahedron Lett. 2008, 49, 4047.

    26. [26]

      Gliozzi, G.; Innorta, A.; Mancini, A.; Bortolo, R.; Perego, C.; Ricci, M.; Cavani, F. Appl. Catal. B-Environ. 2014, 145, 24.

    27. [27]

      Liao, Y.; Liu, Q.; Wang, T.; Long, J.; Ma, L.; Zhang, Q. Green Chem. 2014, 16, 3305.

    28. [28]

      Li, F.; France, L. J.; Cai, Z.; Li, Y.; Liu, S.; Lou, H.; Li, X. Appl.Catal. B-Environ. 2017, 214, 67.

    29. [29]

      Antonetti, C.; Melloni, M.; Licursi, D.; Fulignati, S.; Ribechini, E.; Rivas, S.; Galletti, A. M. R. Appl. Catal. B-Environ. 2017, 206, 364.

    30. [30]

      Wu, C.; Luo, X.; Zhang, H.; Liu, X.; Ji, G.; Liu, Z.; Liu, Z. Green Chem. 2017, 19, 3525.

    31. [31]

      (a) Burba, C.; Volland, H. G. US 4156779, 1979.
      (b) Nelson, S. G.; Spencer, K. L.; Cheung, W. S.; Mamie, S. J. Tetrahedron 2002, 58, 7081.

    32. [32]

      Vollema, G.; Arens, J. F. Recl. Trav. Chim. Pays-Bas 1963, 82, 305.

    33. [33]

      De Jonge A. P.; Van der Ven B. Recl. Trav. Chim. Pays-Bas 1965, 84, 1177.

    34. [34]

      Xu, Z.; Yan, P.; Jiang H.; Liu, K.; Zhang, Z. C. Chin. J. Chem.2017, 35, 581.

    35. [35]

      Lukeš, R.; Koblicova, Z.; Blaha, K. Chem. Commun. 1963, 28, 2182.

  • 加载中
    1. [1]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    2. [2]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    3. [3]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    4. [4]

      Yushan CaiFang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048

    5. [5]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    6. [6]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    7. [7]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    8. [8]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    9. [9]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    10. [10]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    11. [11]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    12. [12]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    13. [13]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    14. [14]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    15. [15]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    16. [16]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    17. [17]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    18. [18]

      Lihui Jiang Wanrong Dong Hua Yang Yongqing Xia Hongjian Peng Jun Yuan Xiaoqian Hu Zihan Zeng Yingping Zou Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

Metrics
  • PDF Downloads(21)
  • Abstract views(2018)
  • HTML views(571)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return