Citation: Xie Huanping, Wu Bo, Chen Muwang, Yu Changbin, Li Hongwang, Li Xiang, Zhou Yonggui. Enantioselective Synthesis of Triarylmethanes Bearing Pyrazole Moiety through Squaramide-Catalyzed Addition of Azadienes with Pyrazolin-5-ones[J]. Chinese Journal of Organic Chemistry, ;2020, 40(10): 3452-3462. doi: 10.6023/cjoc202003005 shu

Enantioselective Synthesis of Triarylmethanes Bearing Pyrazole Moiety through Squaramide-Catalyzed Addition of Azadienes with Pyrazolin-5-ones

  • Corresponding author: Zhou Yonggui, ygzhou@dicp.ac.cn
  • Received Date: 3 March 2020
    Revised Date: 27 March 2020
    Available Online: 13 April 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21690074)the National Natural Science Foundation of China 21690074

Figures(8)

  • Using cinchona-derived bifunctional squaramides as catalyst, an asymmetric addition of aurone-derived azadienes with pyrazolin-5-ones was developed, providing a series of chiral triarylmethanes bearing pyrazole moiety with up to 99% ee.
  • 加载中
    1. [1]

      (a) Finocchiaro, P.; Gust, D.; Mislow, K. J. Am. Chem. Soc. 1974, 96, 3198.
      (b) Dothager, R. S.; Putt, K. S.; Allen, B. J.; Leslie, B. J.; Nesterenko, V.; Hergenrother, P. J. J. Am. Chem. Soc. 2005, 127, 8686.
      (c) Palchaudhuri, R.; Nesterenko, V.; Hergenrother, P. J. J. Am. Chem. Soc. 2008, 130, 10274.
      (d) Gemma, S.; Campiani, G.; Butini, S.; Kukreja, G.; Joshi, B. P.; Persico, M.; Catalanotti, B.; Novellino, E.; Fattorusso, E.; Nacci, V.; Savini, L.; Taramelli, D.; Basilico, N.; Morace, G.; Yardley, V.; Fattorusso, C. J. Med. Chem. 2007, 50, 595.
      (e) Snyder, S. A.; Breazzano, S. P.; Ross, A. G.; Lin, Y.; Zografos, A. L. J. Am. Chem. Soc. 2009, 131, 1753.
      (f) Mibu, N.; Yokomizo, K.; Uyeda, M.; Sumoto, K. Chem. Pharm. Bull. 2005, 53, 1171.
      (g) Mibu, N.; Yokomizo, K.; Miyata, T.; Sumoto, K. J. Heterocycl. Chem. 2010, 47, 1434.
      (h) Panda, G.; Shagufta; Mishra, J. K.; Chaturvedi, V.; Srivastava, A. K.; Srivastava, R.; Srivastava, B. S. Bioorg. Med. Chem. 2004, 12, 5269.
      (i) Panda, G.; Shagufta; Srivastava, A. K.; Sinha, S. Bioorg. Med. Chem. Lett. 2005, 15, 5222.
      (j) Kashyap, V. K.; Gupta, R. K.; Shrivastava, R.; Srivastava, B. S.; Srivastava, R.; Parai, M. K.; Singh, P.; Bera, S.; Panda, G. J. Antimicrob. Chemother. 2012, 67, 1188.

    2. [2]

      For reviews of triarylmethanes and hetero-triarylmethanes, see: (a) Duxbury, D. F. Chem. Rev. 1993, 93, 381.
      (b) Mondal, S.; Panda, G. RSC Adv. 2014, 4, 28317.
      (c) Mondal, S.; Roy, D.; Panda, G. ChemCatChem 2018, 10, 1941.

    3. [3]

      For selected examples of bioactive hetero-triarylmethanes: (a) Whitesitt, C. A.; Whitehead, C. W. J. Med. Chem. 1974, 17, 1298.
      (b) Parai, M. K.; Panda, G.; Chaturvedi, V.; Manju, Y. K.; Sinha, S. Bioorg. Med. Chem. Lett. 2008, 18, 289.
      (c) Yin, L.; Hu, Q.; Hartmann, R. W. J. Med. Chem. 2013, 56, 460.

    4. [4]

      Selected examples of bioactive pyrazoles: (a) Fujimori, Y.; Katsuno, K.; Nakashima, I.; Ishikawa-Takemura, Y.; Fujikura, H.; Isaji, M. J. Pharmacol. Exp. Ther. 2008, 327, 268.
      (b) Enders, D.; Grossmann, A.; Gieraths, B.; Düzdemir, M.; Merkens, C. Org. Lett. 2012, 14, 4254.
      (c) Hack, D.; Chauhan, P.; Deckers, K.; Mizutani, Y.; Raabea, G.; Enders, D. Chem. Commun. 2015, 51, 2266.
      (d) Prasanna, S.; Manivannan, E.; Chaturvedi, S. C. Bioorg. Med. Chem. Lett. 2005, 15, 2097.

    5. [5]

    6. [6]

      Yetra, S. R.; Mondal, S.; Suresh, E.; Biju, A. T. Org. Lett. 2015, 17, 1417.  doi: 10.1021/acs.orglett.5b00293

    7. [7]

      (a) Vetica, F.; Bailey, S.; Chauhan, P.; Turberg, M.; Ghaur, A.; Raabe, G.; Enders, D. Adv. Synth. Catal. 2017, 359, 3729.
      (b) Bao, X.; Wei, S.; Qu, J.; Wang, B. Chem. Commun. 2018, 54, 2028.
      (c) Sharma, V.; Kaur, A.; Sahoo, S. C.; Chimni, S. S. Org. Biomol. Chem. 2018, 16, 6470.

    8. [8]

      (a) Kumarswamyreddy, N.; Kesavan, V. Org. Lett. 2016, 18, 1354.
      (b) Luo, W.; Song, D.; Fang, L.; Nian, S.; Hou, H.; Ling, F.; Zhong, W. Asian J. Org. Chem. 2018, 7, 2417.
      (c) Sharma, A.; Sharma, V.; Chimni, S. S. Org. Biomol. Chem. 2019, 17, 9514.

    9. [9]

      (a) Gogoi, S.; Zhao, C.-G. Tetrahedron Lett. 2009, 50, 2252.
      (b) Xie, J.; Xing, X.-Y.; Sha, F.; Wu, Z.-Y.; Wu, X.-Y. Org. Biomol. Chem. 2016, 14, 8346.

    10. [10]

      (a) Liao, Y.-H.; Chen, W.-B.; Wu, Z.-J.; Du, X.-L.; Cun, L.-F.; Zhang, X.-M.; Yuan, W.-C. Adv. Synth. Catal. 2010, 352, 827.
      (b) Li, F.; Sun, L.; Teng, Y.; Yu, P.; Zhao, J. C.-G.; Ma, J.-A. Chem.- Eur. J. 2012, 18, 14255.
      (c) Li, J.-H.; Du, D.-M. Org. Biomol. Chem. 2015, 13, 5636.
      (d) Hack, D.; Chauhan, P.; Deckers, K.; Mizutani, Y.; Raabea, G.; Enders, D. Chem. Commun. 2015, 51, 2266.
      (e) Amireddy, M.; Chen, K. RSC Adv. 2016, 6, 77474.
      (f) Zheng, Y.; Cui, L.; Wang, Y.; Zhou, Z. J. Org. Chem. 2016, 81, 4340.
      (g) Li, J.-H.; Cui, Z.-H.; Du, D.-M. Org. Chem. Front. 2016, 3, 1087.
      (h) Hack, D.; Dürr, A. B.; Deckers, K.; Chauhan, P.; Seling, N.; Rübenach, L.; Mertens, L.; Raabe, G.; Schoenebeck, F.; Enders, D. Angew. Chem., Int. Ed. 2016, 55, 1797.
      (i) Sharma, V.; Kaur, J.; Chimni, S. S. Eur. J. Org. Chem. 2018, 3489.
      (j) Phelan, J. P.; Ellman, J. A. Adv. Synth. Catal. 2016, 358, 1713.
      (k) Li, F.; Pei, W.; Wang, J.; Liu, J.; Wang, J.; Zhang, M.-L.; Chen, Z.; Liu, L. Org. Chem. Front. 2018, 5, 1342.
      (l) Vila, C.; Slack, S.; Blay, G.; Muñoz, M. C.; Pedro, J. R. Adv. Synth. Catal. 2019, 361, 1902.
      (m) Rao, K. S.; Ramesh, P.; Trivedi, R.; Kantam, M. L. Tetrahedron Lett. 2016, 57, 1227.

    11. [11]

      (a) Bao, X.; Wang, B.; Cui, L.; Zhu, G.; He, Y.; Qu, J.; Song, Y. Org. Lett. 2015, 17, 5168.
      (b) Amr, F. I.; Vila, C.; Blay, G.; Muñoz, M. C.; Pedro, J. R. Adv. Synth. Catal. 2016, 358, 1583.
      (c) Vila, C.; Amr, F. I.; Blay, G.; Muñoz, M. C.; Pedro, J. R. Chem.- Asian J. 2016, 11, 1532.

    12. [12]

      Yuan, H.; Li, Y.; Zhao, H.; Yang, Z.; Li, X.; Li, W. Chem. Commun. 2019, 55, 12715.  doi: 10.1039/C9CC06360A

    13. [13]

      Zhou, J.; Huang, W.-J.; Jiang, G.-F. Org. Lett. 2018, 20, 1158.  doi: 10.1021/acs.orglett.8b00025

    14. [14]

      (a) Yang, L.-C.; Rong, Z.-Q.; Wang, Y.-N.; Tan, Z. Y.; Wang, M.; Zhao, Y. Angew. Chem., Int. Ed. 2017, 56, 2927.
      (b) Rong, Z.-Q.; Yang, L.-C.; Liu, S.; Yu, Z.; Wang, Y.-N.; Tan, Z. Y.; Huang, R.-Z.; Lan, Y.; Zhao, Y. J. Am. Chem. Soc. 2017, 139, 15304.
      (c) Wang, Y.-N.; Yang, L.-C.; Rong, Z.-Q.; Liu, T.-L.; Liu, R.; Zhao, Y. Angew. Chem., Int. Ed. 2018, 57, 1596.
      (d) Qi, J.; Tang, H.; Chen, C.; Cui, S.; Xu, G. Org. Chem. Front. 2019, 6, 2760.
      (e) Liu, Y.-Z.; Wang, Z.; Huang, Z.; Zheng, X.; Yang, W.-L.; Deng, W.-P. Angew. Chem., Int. Ed. 2020, 59, 1238.
      (f) Xie, H.-P.; Sun, L.; Wu, B.; Zhou, Y.-G. J. Org. Chem. 2019, 84, 15498.
      (g) Kuamri, P.; Liu, W.; Wang, C.-J.; Dai, J.; Wang, M.-X.; Yang, Q.-Q.; Deng, Y.-H.; Shao, Z.-H. Chin. J. Chem. 2020, 38, 511.
      (h) Trost, B. M.; Zuo, Z. Angew. Chem., Int. Ed. 2020, 59, 1243.

    15. [15]

      (a) Rong, Z.-Q.; Wang, M.; Chow, C. H. E.; Zhao, Y. Chem.-Eur. J. 2016, 22, 9483.
      (b) Ni, H.; Tang, X.; Yao, W.; Ullah, N.; Lu, Y. Angew. Chem., Int. Ed. 2017, 56, 14222.
      (c) Chen, J.; Huang, Y. Org. Lett. 2017, 19, 5609.

    16. [16]

      (a) Gao, Z.-H.; Chen, K.-Q.; Zhang, Y.; Kong, L.-M.; Li, Y.; Ye, S. J. Org. Chem. 2018, 83, 15225.
      (b) Chen, K.-Q.; Gao, Z.-H.; Ye, S. Org. Chem. Front. 2019, 6, 405.

    17. [17]

      Xie, H.-P.; Wu, B.; Wang, X.-W.; Zhou, Y.-G. Chin. J. Catal. 2019, 40, 1566.  doi: 10.1016/S1872-2067(19)63396-6

    18. [18]

      (a) Chen, J.; Jia, P.; Huang, Y. Org. Lett. 2018, 20, 6715.
      (b) Zeng, R.; Shan, C.; Liu, M.; Jiang, K.; Ye, Y.; Liu, T.-Y.; Chen, Y.-C. Org. Lett. 2019, 21, 2312.
      (c) Marques, A.-S.; Duhail, T.; Marrot, J.; Chataigner, I.; Coeffard, V.; Vincent, G.; Moreau, X. Angew. Chem., Int. Ed. 2019, 58, 9969.

    19. [19]

      (a) Gu, Z.; Zhou, J.; Jiang, G.-F.; Zhou, Y.-G. Org. Chem. Front. 2018, 5, 1148.
      (b) Gu, Z.; Xie, J.-J.; Jiang, G.-F.; Zhou, Y.-G. Asian J. Org. Chem. 2018, 7, 1561.
      (c) Lin, W.; Zhang, C.; Xu, W.; Cheng, Y.; Li, P.; Li, W. Adv. Synth. Catal. 2019, 361, 476.
      (d) Lin, W.; Lin, X.; Cheng, Y.; Chang, X.; Zhou, S.; Li, P.; Li, W. Org. Chem. Front. 2019, 6, 2452.
      (e) Gu, Z.; Wu, B.; Jiang, G.-F.; Zhou, Y.-G. Chin. J. Chem. 2018, 36, 1130.
      (f) Wang, C.-S.; Li, T.-Z.; Cheng, Y.-C.; Zhou, J.; Mei, G.-J.; Shi, F. J. Org. Chem. 2019, 84, 3214.
      (g) Li, X.; Yan, J.; Qin, J.; Lin, S.; Chen, W.; Zhan, R.; Huang, H. J. Org. Chem. 2019, 84, 8035.
      (h) Fan, T.; Zhang, Z.-J.; Zhang, Y.-C.; Song, J. Org. Lett. 2019, 21, 7897.
      (i) Wang, C.-J.; Yang, Q.-Q.; Wang, M.-X.; Shang, Y.-H.; Tong, X.-Y.; Deng, Y.-H.; Shao, Z. Org. Chem. Front. 2020, 7, 609.

    20. [20]

      Yan, Z.; Gao, X.; Zhou, Y.-G. Chin. J. Catal. 2017, 38, 784.  doi: 10.1016/S1872-2067(17)62804-3

    21. [21]

      Löser, R.; Chlupacova, M.; Marecek, A.; Opletalova, V.; Gütschow, M. Helv. Chim. Acta 2004, 87, 2597.  doi: 10.1002/hlca.200490232

    22. [22]

      (a) Ouellet, S. G.; Gauvreau, D.; Cameron, M.; Dolman, S.; Campeau, L.-C.; Hughes, G.; O'Shea, P. D.; Davies, I. W. Org. Process Res. Dev. 2012, 16, 214.
      (b) Tsou, H.-R.; MacEwan, G.; Birnberg, G.; Zhang, N.; Brooijmans, N.; Barza, L. T.; Hollander, I.; Kaloustian, S. A.; Yu, K. Bioorg. Med. Chem. Lett. 2010, 20, 2259.

    23. [23]

      (a) Wang, X.-J.; Tan, J.; Grozinger, K. Tetrahedron Lett. 2000, 41, 4713.
      (b) Braňa, M. F.; Gradillas, A.; Ovalles, A. G.; López, B.; Acero, N.; Llinares, F.; Mingarro, D. M. Bioorg. Med. Chem. 2006, 14, 9.

  • 加载中
    1. [1]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    2. [2]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    3. [3]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    4. [4]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    5. [5]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    6. [6]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    7. [7]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    8. [8]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    9. [9]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    10. [10]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    11. [11]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    12. [12]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    13. [13]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    14. [14]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    15. [15]

      Jun Huang Pengfei Nie Yongchao Lu Jiayang Li Yiwen Wang Jianyun Liu . Efficient adsorption of hardness ions by a mordenite-loaded, nitrogen-doped porous carbon nanofiber cathode in capacitive deionization. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066

    16. [16]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . Hollow AgPt@Pt core-shell cocatalyst with electron-rich Ptδ- shell for boosting selectivity of photocatalytic H2O2 production for faceted BiVO4. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    17. [17]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    18. [18]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    19. [19]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    20. [20]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

Metrics
  • PDF Downloads(6)
  • Abstract views(1179)
  • HTML views(134)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return