Citation: Du Chuanqian, Xie Baohua, He Ming, Hu Zhiye, Liu Yu, He Xue, Liu Fanyu, Cheng Chen, Zhou Hai-Bing, Huang Shengtang, Dong Chun'e. Design, Synthesis and Biological Evaluation of Pyrano[2, 3-b]-naphthoquinone Derivatives as Acetylcholinesterase Inhibitors[J]. Chinese Journal of Organic Chemistry, ;2020, 40(7): 2035-2044. doi: 10.6023/cjoc202002039 shu

Design, Synthesis and Biological Evaluation of Pyrano[2, 3-b]-naphthoquinone Derivatives as Acetylcholinesterase Inhibitors

  • Corresponding author: Zhou Hai-Bing, zhouhb@whu.edu.cn Huang Shengtang, cdong@whu.edu.cn Dong Chun'e, cdong@whu.edu.cn
  • These authors contributed equally to this work
  • Received Date: 27 February 2020
    Revised Date: 11 April 2020
    Available Online: 23 April 2020

    Fund Project: the Open Project of the Diabetes Key Laboratory of Hubei University of Science and Technology 2020-21XZ002the National Natural Science Foundation of China 81773557the Major Project of Technology Innovation Program of Hubei Province 2018ACA123Project supported by the National Natural Science Foundation of China (No. 81773557), the Major Project of Technology Innovation Program of Hubei Province (No. 2018ACA123) and the Open Project of the Diabetes Key Laboratory of Hubei University of Science and Technology (No. 2020-21XZ002)

Figures(5)

  • A novel synthetic methodology was developed and a series of pyrano[2, 3-b]naphthoquinone derivatives were designed and synthesized in excellent yields. Most of these compounds showed effective anti-AChE activities and high selectivity for acetylcholinesterase (AChE) over butyrylcholinesterase (BuChE). Among them, (2-Amino-4-(3-cyanophenyl)-5, 10-dioxo-5, 10-dihydro-4H-benzo[g]chromene-3-carbonitrile) (3n) was significantly potent, with an IC50 value of 1.22 μmol/L for AChE, which was 164-fold higher than butyrylcholinesterase (BuChE) in vitro. Moreover, molecular modeling provides valuable information for understanding the potency and selectivity of this kind of compounds for AChE. Consequently, these potent and highly selective AChE inhibitors are potential leads for development of the drug for treatment of Alzheimer's disease.
  • 加载中
    1. [1]

      Bondi, M. W.; Edmonds, E. C.; Salmon, D. P. J. Int. Neuropsychol. Soc. 2017, 23, 818.  doi: 10.1017/S135561771700100X

    2. [2]

      Cuetos, F.; Herrera, E.; Ellis, A. W. Neuropsychologia 2010, 48, 3329.  doi: 10.1016/j.neuropsychologia.2010.07.017

    3. [3]

      Alzheimer's Association Alzheimers Dement. 2019, 15, 321.

    4. [4]

      Wimo, A.; Guerchet, M.; Ali, G. C.; Wu, Y. T.; Prina, A. M.; Winblad, B.; Jönsson, L.; Liu, Z.; Prince, M. Alzheimers Dement. 2016, 13, 1.

    5. [5]

      Scarpini, E.; Scheltens, P.; Feldman, H. Lancet Neurol. 2003, 2, 539.  doi: 10.1016/S1474-4422(03)00502-7

    6. [6]

      Fan, L.; Mao, C.; Hu, X.; Zhang, S.; Yang, Z.; Hu, Z.; Sun, H.; Fan, Y.; Dong, Y.; Yang, J.; Shi, C.; Xu, Y. Front Neurol 2020, 10, 1312.  doi: 10.3389/fneur.2019.01312

    7. [7]

      Contestabile, A. Behav. Brain Res. 2011, 221, 334.  doi: 10.1016/j.bbr.2009.12.044

    8. [8]

      Enz, A.; Amstutz, R.; Boddeke, H.; Gmelin, G.; Malanowski, J. Prog. Brain Res. 1993, 98, 431.  doi: 10.1016/S0079-6123(08)62429-2

    9. [9]

      Davies, P.; Maloney, A. J. Lancet 1976, 2, 1403.

    10. [10]

      Babu, M. A.; Lakshmi, M.; Vasanthanathan, P. G.; Kaskhedikar, S. Indian J. Pharm. Sci. 2005, 67, 1.

    11. [11]

      Peauger, L.; Azzouz, R.; Gembus, V.; Ţînţaş, M. L.; Sopková-de Oliveira Santos, J.; Bohn, P.; Papamicaël, C.; Levacher, V. J. Med. Chem. 2017, 60, 5909.
       

    12. [12]

      (a) Auld, D. S.; Kornecook, T. J.; Bastianetto, S.; Quirion, R. Prog. Neurobiol. 2002, 68, 209.
      (b) Mohammad, D.; Chan, P.; Bradley, J.; Lanctôt, K.; Herrmann, N. Expert Opin. Drug Saf. 2017, 16, 1009.

    13. [13]

      (a) Smith, D. A. Am. J. Health-Syst. Pharm. 2009, 66, 899.
      (b) Herrmann, N.; Chau, S. A.; Kircanski, I.; Lanctôt, K. L. Drugs 2011, 71, 2031.
      (c) Misra, S.; Medhi, B. Neurol. Sci. 2013, 34, 831.

    14. [14]

      Brewster, J. T.; Dell'Acqua, S.; Thach, D. Q.; Sessler, J. L. ACS Chem. Neurosci. 2019, 10, 155.  doi: 10.1021/acschemneuro.8b00517

    15. [15]

      (a) Luo, Z.; Sheng, J.; Sun, Y.; Lu, C.; Yan, J.; Liu, A.; Luo, H. B.; Huang, L.; Li, X. J. Med. Chem. 2013, 56, 9089.
      (b) Graham, W. V.; Bonito-Oliva, A.; Sakmar, T. P. Annu. Rev. Med. 2017, 68, 413.

    16. [16]

      Kuhl, D. E.; Koeppe, R. A.; Snyder, S. E.; Minoshima, S.; Frey, K. A.; Kilbourn, M. R. Ann. Neurol. 2006, 59, 13.  doi: 10.1002/ana.20672

    17. [17]

      Akiko, K. J.; Todd, E.; Keith, D. G.; Abdelrahman, S. M.; Mi, H. L.; Sylvie, G. T. Chem. Sci. 2013, 4, 4137.  doi: 10.1039/c3sc51902c

    18. [18]

      Li, S. Y.; Jiang, N.; Xie, S. S.; Wang, K. D.; Wang, X. B.; Kong, L. Y. Org. Biomol. Chem. 2014, 12, 801.  doi: 10.1039/C3OB42010H

    19. [19]

      Xie, S. S.; Wang, X.; Jiang, N.; Yu, W.; Wang, K. D.; Lan, J. S.; Li, Z. R.; Kong, L. Y. Eur. J. Med. Chem. 2015, 95, 153.  doi: 10.1016/j.ejmech.2015.03.040

    20. [20]

      Demir Özkay, Ü.; Can, Ö. D.; Sağlık, B. N.; Acar Çevik, U.; Levent, S.; Özkay, Y.; Ilgın, S.; Atlı, Ö. Bioorg. Med. Chem. Lett. 2016, 26, 5387.  doi: 10.1016/j.bmcl.2016.10.041

    21. [21]

      Azzouz, R.; Peauger, L.; Gembus, V.; Ţînţaş, M. L.; Sopková-de Oliveira Santos, J.; Papamicaël, C.; Levacher, V. Eur. J. Med. Chem. 2018, 145, 165.  doi: 10.1016/j.ejmech.2017.12.084

    22. [22]

      Singh, M.; Silakari, O. RSC Adv. 2016, 6, 108411.  doi: 10.1039/C6RA17678J

    23. [23]

      Zheng, J.; He, M.; Xie, B.; Yang, L.; Hu, Z.; Zhou, H. B.; Dong, C. Org. Biomol. Chem. 2018, 16, 472.  doi: 10.1039/C7OB02794J

    24. [24]

      Martín-Acosta, P.; Haider, S.; Amesty, Á.; Aichele, D.; Jose, J.; Estévez-Braun, A. Eur. J. Med. Chem. 2018, 144, 410.  doi: 10.1016/j.ejmech.2017.12.058

    25. [25]

      Wang, X. H.; Zhang, X. H.; Tu, S. J.; Shi, F.; Zou, X.; Yan, S.; Han, Z. G.; Hao, W. J.; Cao, X. D.; Wua, S. S. J. Heterocycl. Chem. 2009, 46, 832.  doi: 10.1002/jhet.153

    26. [26]

      Khan, N.; Pal, S.; Karamthulla, S.; Choudhury, L. H. RSC Adv. 2015, 45, 3732.
       

    27. [27]

      Ellman, G. L.; Courtney, K. D.; Andres, V. Jr; Feather-Stone, R. M. Biochem. Pharmacol. 1961, 7, 88.  doi: 10.1016/0006-2952(61)90145-9

    28. [28]

      Maleki, B.; Babaee, S.; Tayebee, R. Appl. Organomet. Chem. 2015, 29, 408.  doi: 10.1002/aoc.3306

    29. [29]

      Sameem, B.; Saeedi, M.; Mahdavi, M.; Nadri, H.; Moghadam, F. H.; Edraki, N.; Khan, M. I.; Amini, M. Bioorg. Med. Chem. 2017, 25, 3980.
       

    30. [30]

      Czarnecka, K.; Chufarova, N.; Halczuk, K.; Maciejewska, K.; Girek, M.; Skibiński, R.; Jończyk, J.; Bajda, M.; Kabziński, J.; Majsterek, I.; Szymański, P. Eur. J. Med. Chem. 2018, 145, 760.  doi: 10.1016/j.ejmech.2018.01.014

    31. [31]

      Dgachi, Y.; Sokolov, O.; Luzet, V.; Godyń, J.; Panek, D.; Bonet, A.; Martin, H.; Iriepa, I.; Moraleda, I.; García-Iriepa, C.; Janockova, J.; Richert, L.; Soukup, O.; Malawska, B.; Chabchoub, F.; Marco- Contelles, J.; Ismaili, L. Eur. J. Med. Chem. 2017, 126, 576.  doi: 10.1016/j.ejmech.2016.11.050

    32. [32]

      Eghtedari, M.; Sarrafi, Y.; Nadri, H.; Mahdavi, M.; Moradi, A.; Homayouni Moghadam, F.; Emami, S.; Firoozpour, L.; Asadipour, A.; Sabzevari, O.; Foroumadi, A. Eur. J. Med. Chem. 2017, 128, 237.
       

    33. [33]

      Kavita, J.; Saikat, C.; Kuntal, P.; Kalpataru, D. New J. Chem. 2019, 43, 1299.  doi: 10.1039/C8NJ04219E

    34. [34]

      Aniruddha, D.; Nagaraj, A.; Amarajothi, D.; Shyam, B. Microporous Mesoporous Mater. 2019, 284, 459.  doi: 10.1016/j.micromeso.2019.04.057

    35. [35]

      Li, C. X.; Zhong, D. D.; Huang, X. Q.; Shen, G. D.; Li, Q.; Du, J. Y.; Li, Q. L.; Wang, S. N.; Li, J. K.; Dou, J. M. New J. Chem. 2019, 43, 5813.  doi: 10.1039/C8NJ06460A

    36. [36]

      Guo, F.; Su, C. H.; Chu, Z. P.; Zhao, M. H. J. Solid State Chem. 2019, 277, 25.  doi: 10.1016/j.jssc.2019.05.036

  • 加载中
    1. [1]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    2. [2]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    3. [3]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    4. [4]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    5. [5]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    6. [6]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    7. [7]

      Xiao XiaoBiao ChenJia-Wei LiJun-Bo ZhengXu WangHang ZhaoFen-Er Chen . Nitrite-catalyzed economic and sustainable bromocyclization of tryptamines/tryptophols to access hexahydropyrrolo[2,3-b]indoles/tetrahydrofuroindolines in batch and flow. Chinese Chemical Letters, 2024, 35(7): 109280-. doi: 10.1016/j.cclet.2023.109280

    8. [8]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    9. [9]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

    10. [10]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    11. [11]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    12. [12]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    13. [13]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    14. [14]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    15. [15]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    16. [16]

      Jiying Liu Zehua Li Wenjing Zhang Donghui Wei . Molecular Orbital and Nucleus-Independent Chemical Shift Calculations for C6H6 and B12H122-: A Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 186-192. doi: 10.12461/PKU.DXHX202406085

    17. [17]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    18. [18]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    19. [19]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    20. [20]

      Xintian Xie Sicong Ma Yefei Li Cheng Shang Zhipan Liu . Application of Machine Learning Potential-based Theoretical Simulations in Undergraduate Teaching Laboratory Course Design. University Chemistry, 2025, 40(3): 140-147. doi: 10.12461/PKU.DXHX202405164

Metrics
  • PDF Downloads(9)
  • Abstract views(1209)
  • HTML views(135)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return