Citation: Zhai Lianjie, Zhang Junlin, Zhang Jiarong, Wu Minjie, Bi Fuqiang, Wang Bozhou. Progress in Synthesis and Properties of High Energy Density Compounds Regulated by N—F Bond[J]. Chinese Journal of Organic Chemistry, ;2020, 40(6): 1484-1501. doi: 10.6023/cjoc202001018 shu

Progress in Synthesis and Properties of High Energy Density Compounds Regulated by N—F Bond

  • Corresponding author: Bi Fuqiang, bifuqiang@gmail.com Wang Bozhou, wbz600@163.com
  • Received Date: 12 January 2020
    Revised Date: 27 February 2020
    Available Online: 6 March 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21805224)the National Natural Science Foundation of China 21805224

Figures(37)

  • Compared with the traditional N-O bond-based energetic materials, N-F bond-regulated energetic materials have received worldwide research interest due to their special features of high density, high specific impulse, and high heat release upon combustion with metals. The N-F bond-regulated energetic materials are classified as N-F azoles, (difluoroamino)dinitromethyl-substituted derivatives, gem-bis(difluoramino)-substituted derivatives, and difluoroamino polymers according to their structural characteristics. The recent developments of N-F bond and difluoramino (NF2) energetic derivatives are reviewed. The construction methodologies of N-F bond and difluoroamino groups as well as the synthetic routes to their energetic derivatives are emphatically reviewed. Moreover, the physicochemical and energetic properties of some typical compounds are briefly introduced. It will be the inevitable trend to develop effective, safe, and simple N-F bond and difluoraminiation preparation method, and novel high-performing N-F bond-based azoles and cyclic difluoramino-nitramines with moderate sensitivities and stable structures.
  • 加载中
    1. [1]

      Gao, H.; Shreeve, J. M. Chem. Rev. 2011, 111, 7377.  doi: 10.1021/cr200039c

    2. [2]

      Klapötke, T. M. Chemistry of High-energy Materials, 2nd ed., Walter de Gruyter, Berlin, 2012.

    3. [3]

      Badgujar, D. M.; Talawar, M. B.; Asthana, S. N.; Mahulikar, P. P. J. Hazard. Mater. 2008, 151, 289.  doi: 10.1016/j.jhazmat.2007.10.039

    4. [4]

      Xue, Q.; Bi, F. Q.; Zhang, J. R.; Zhang, J. L.; Wang, B. Z.; Zhang, S. R. Chin. J. Org. Chem. 2019, 39, 1244 (in Chinese).
       

    5. [5]

      Wang, Y.; Liu, Y. J.; Song, S. W.; Yang, Z. J.; Qi, X. J.; Wang, K. C.; Liu, Y.; Zhang, Q. H.; Tian, Y. Nat. Commun. 2018, 9, 2444.  doi: 10.1038/s41467-018-04897-z

    6. [6]

      Tang, Y. X.; Kumar, D.; Shreeve, J. M. J. Am. Chem. Soc. 2017, 139, 13684.  doi: 10.1021/jacs.7b08789

    7. [7]

      Zhai, L. J.; Bi, F. Q.; Huo, H.; Luo, Y. F.; Li, X. Z.; Chen, S. P.; Wang, B. Z. Front. Chem. 2019, 7, 559.  doi: 10.3389/fchem.2019.00559

    8. [8]

      Zhang, J. R.; Bi, F. Q.; Lian, P.; Zhang, J. L.; Wang, B. Z. Chin. J. Org. Chem. 2017, 37, 2736 (in Chinese).
       

    9. [9]

      Li, Y. L.; Xue, M.; Wang J. L.; Cao, D. L.; Ma, Z. L. Chin. J. Org. Chem. 2016, 36, 1528 (in Chinese).
       

    10. [10]

      Zhou, J.; Zhang, J. L.; Ding, L.; Bi, F. Q.; Wang, B. Z. Chin. J. Energ. Mater. 2019, 27, 708 (in Chinese).  doi: 10.11943/CJEM2018302

    11. [11]

      Zhou, J.; Zhang, J. L.; Ding, L.; Bi, F. Q.; Wang, B. Z. Chin. J. Explos. Propellants 2019, 42, 608 (in Chinese).

    12. [12]

      Zhai, L. J.; Bi, F. Q.; Luo, Y. F.; Wang, N. X.; Zhang, J. L.; Wang, B. Z. Sci. Rep. 2019, 9, 4321.  doi: 10.1038/s41598-019-39723-z

    13. [13]

      Xu, Y. G.; Shen, C.; Lin, Q. H.; Wang, P. C.; Jiang, C.; Lu, M. J. Mater. Chem. A 2016, 4, 17791.  doi: 10.1039/C6TA08831G

    14. [14]

      Barton, L. M.; Edwards, J. T.; Johnson, E. C.; Bukowski, E. J.; Sausa, R. C.; Byrd, E. F. C.; Orlicki, J. A.; Sabatini, J. J.; Baran, P. S. J. Am. Chem. Soc. 2019, 141, 12531.  doi: 10.1021/jacs.9b06961

    15. [15]

      Zhai, L. J.; Bi, F. Q.; Luo, Y. F.; Sun, L.; Huo, H.; Zhang, J. C.; Zhang, J. L.; Wang, B. Z.; Chen, S. P. Chem. Eng. J. 2020, 391, 123573.  doi: 10.1016/j.cej.2019.123573

    16. [16]

      Vishnevskiy, Y. V.; Tikhonov, D.; Schwabedissen, J.; Stammler, H-G.; Moll, R.; Krumm, B.; Klapötke, T. M.; Mitzel, N. W. Angew. Chem., Int. Ed. 2017, 56, 9619.

    17. [17]

      Yu, Q.; Yin, P.; Zhang, J. H.; He, C. L.; Imler, G. H.; Parrish, D. A.; Shreeve, J. M. J. Am. Chem. Soc. 2017, 139, 8816.  doi: 10.1021/jacs.7b05158

    18. [18]

      Lukin, K. A.; Li, J.; Eaton, P. E.; Kanomata, N.; Hain. J.; Punzalan, E.; Gilardi, R. J. Am. Chem. Soc. 1997, 119, 9591.  doi: 10.1021/ja970552q

    19. [19]

      Zhang, M. X.; Eaton, P. E.; Gilardi, R. Angew. Chem., Int. Ed. 2000, 39, 401.  doi: 10.1002/(SICI)1521-3773(20000117)39:2<401::AID-ANIE401>3.0.CO;2-P

    20. [20]

      Gong, X. B.; Sun, C. H.; Pang, S. P.; Zhang, J.; Li, Y. C.; Zhao, X. Q. Chin. J. Org. Chem. 2012, 32, 486 (in Chinese).
       

    21. [21]

      Nair, U. R.; Sivabalan, R.; Gore, G. M.; Geetha, M.; Asthana S. N.; Singh, H. Combust., Explos. Shock Waves 2005, 41, 121.  doi: 10.1007/s10573-005-0014-2

    22. [22]

      Ammon, H. L. Struct. Chem. 2001, 12, 205.  doi: 10.1023/A:1016607906625

    23. [23]

      Feng, Z. G. Prog. Chem. 2000, 12, 171 (in Chinese).  doi: 10.3321/j.issn:1005-281X.2000.02.006

    24. [24]

      Liu, H.; Zhang, Y. J.; Zhang, L. Y.; Zheng, W. F.; Pan, R. M. Chin. J. Explos. Propellants 2019, 42, 363 (in Chinese).

    25. [25]

      Yetter, R. A.; Dryer, F. L.; Rabitz, H.; Brown, R. C.; Kolb, C. E. Combust. Flame 1998, 112, 387.  doi: 10.1016/S0010-2180(97)00123-5

    26. [26]

    27. [27]

      Valluri, S. K.; Schoenitz, M.; Dreizin, E. Def. Technol. 2019, 15, 1.

    28. [28]

      Li, S. W.; Zhao, F. Q.; Yuan, C.; Luo, Y.; Gao, Y. J. Solid Rocket Technol. 2002, 25, 36 (in Chinese).  doi: 10.3969/j.issn.1006-2793.2002.02.009

    29. [29]

      Chapman, R. D. Struct. Bonding 2007, 125, 123.

    30. [30]

      Li, H.; Qin, Y. J.; Li, J. H.; Pan, R. M.; Wang, W. J. Chem. Bull. 2012, 75, 1076 (in Chinese).

    31. [31]

      Klapötke, T. M. J. Fluorine Chem. 2006, 127, 679.  doi: 10.1016/j.jfluchem.2006.03.001

    32. [32]

      Chen, J. F.; Yu, Y.; Li, Y. C.; Pang, S. P. J. Fluorine Chem. 2018, 205, 35.  doi: 10.1016/j.jfluchem.2017.11.008

    33. [33]

      Ruff, O.; Giese, M. Eur. J. Inorg. Chem. 1936, 69, 598.

    34. [34]

      Davenas, A. J. Propul. Power 2003, 19, 1108.

    35. [35]

      Petry, R. C.; Freeman, J. P. J. Org. Chem. 1967, 32, 4034  doi: 10.1021/jo01287a068

    36. [36]

      Coon, C. L.; Ross, D. L. US 3732288, 1973.

    37. [37]

      Reed, S. F.; Shoults, R. D. J. Org. Chem. 1972, 37, 3326.  doi: 10.1021/jo00986a027

    38. [38]

      Coon, C. L.; Ross, D. L. US 3714254, 1973.

    39. [39]

      Wiener, C.; Tyler, W. E. US 4128583, 1978.

    40. [40]

      Zheng, Y. Y.; Zhou, J. Z.; Zhou, D. L.; Zhang, M. N. Acta Armamentarii 1988, 1, 59 (in Chinese).

    41. [41]

      Wang, W. J.; Li, H.; Pan, R. M.; Zhu, W. H. Chin. J. Org. Chem. 2019, 39, 170 (in Chinese).
       

    42. [42]

      Li, H.; Zhang, L. Y.; Pan, R. M.; Wang, W. J. Chin. J. Explos. Propellants. 2012, 35, 37 (in Chinese).

    43. [43]

      Zhang, M. Q.; Liu, H. Y.; Gao, B. Z.; Zhang, L.; Kang, L.; Zhang, K. R. Chin. J. Energ. Mater. 2012, 20, 314 (in Chinese).  doi: 10.3969/j.issn.1006-9941.2012.03.011

    44. [44]

      Laali, K. K.; Tanaka, M.; Forohar, F.; Cheng, M.; Fetzer, J. C. J. Fluorine Chem. 1998, 91, 185.  doi: 10.1016/S0022-1139(98)00224-3

    45. [45]

      Dalinger, I. L.; Shkineva, T. K.; Vatsadze, I. A.; Popova, G. P.; Shevelev, S. A. Mendeleev Commun. 2011, 21, 48.  doi: 10.1016/j.mencom.2011.01.020

    46. [46]

      Grakauskas, V.; Baum, K. J. Org. Chem. 1969, 34, 2840.  doi: 10.1021/jo01262a010

    47. [47]

      Chapman, R. D.; Davis, M. C.; Gilardi, R. Synth. Commun. 2003, 35, 4173.

    48. [48]

      Sharts, C. M. J. Org. Chem. 1968, 33, 1008.  doi: 10.1021/jo01267a014

    49. [49]

      Mcpake, C. B.; Murray, C. B.; Sandford, G. Aust. J. Chem. 2013, 66, 145.  doi: 10.1071/CH12381

    50. [50]

      Archibald, T. G.; Manser, G. E. US 5789617, 1998.

    51. [51]

      Emelexus, H. J.; Shreeve, J. M.; Verma, R. D. Adv. Inorg. Chem. 1989, 33, 139.  doi: 10.1016/S0898-8838(08)60195-6

    52. [52]

      Klapdor, M. F.; Willner, H.; Poll, W.; Mootz, D. Angew. Chem. 1996, 108, 320.  doi: 10.1002/ange.19961080309

    53. [53]

      Freeman, J. P.; Kennedy, A.; Colburn, C. B. J. Am. Chem. Soc. 1960, 82, 5304.  doi: 10.1021/ja01505a009

    54. [54]

      Petry, R. C.; Freeman, J. P. J. Am. Chem. Soc. 1961, 83, 3912.

    55. [55]

      Graham, W. H.; Parker, C. O. J. Org. Chem. 1963, 28, 850.

    56. [56]

      Grakauskas, V.; Baum, K. J. Am. Chem. Soc. 1970, 92, 2096.  doi: 10.1021/ja00710a050

    57. [57]

      Banks, R. E.; Haszeldine, R. N.; Lalu, J. P. J. Chem. Soc., C 1966, 1514.  doi: 10.1039/j39660001514

    58. [58]

      Baum, K. J. Am. Chem. Soc. 1968, 90, 7083.  doi: 10.1021/ja01027a035

    59. [59]

      Fokin, A. V.; Kosyrev, Y. M.; Shevchenko, V. I. Russ. Chem. Bull. 1983, 31, 1626.

    60. [60]

      Graham, W. H.; Freeman, J. P. J. Am. Chem. Soc. 1967, 89, 716.  doi: 10.1021/ja00979a058

    61. [61]

      Keith, J. N.; Douthart, R. J.; Sumida, W. K.; Solomon, I. J. Advanced Propellant Chemistry 1966, 141.

    62. [62]

      Haiges, R.; Wagner, R.; Boatz, J. A.; Yousufuddin, M.; Etzkorn, M.; Surya Prakash, G. K.; Christe, K. O.; Chapman, R. D.; Welker, M. F.; Kreutzberger. C. B. Angew. Chem., Int. Ed. 2006, 45, 5179.  doi: 10.1002/anie.200601020

    63. [63]

      Coon, C. L.; Hill, M. E.; Ross, D. L. US 3759998, 1973.

    64. [64]

      Baum, K.; Grakauskas, V. US 4075246, 1978.

    65. [65]

      Flanagan, G. E.; Frankel, M. B.; Witucki, E. F. US 4141910, 1979.

    66. [66]

      Surya Prakash, G. K.; Etzkorn, M.; Olah, G. A.; Christe, K. O.; Schneidera, S.; Vij, A. Chem. Commun. 2002, 1712.

    67. [67]

      Lustig, M.; Cady, G. H. Inorg. Chem. 1963, 2, 388.  doi: 10.1021/ic50006a036

    68. [68]

      Fokin, A. K.; Studnev, Y. N.; Rapkin, A. L.; Kuznetsova, L. D. Russ. Chem. Bull. 1996, 45, 2547.  doi: 10.1007/BF01431113

    69. [69]

      Dalinger, I. L.; Shakhnes, A. K.; Monogarov, K. A.; Suponitsky, K. Y.; Sheremetev, A. B. Mendeleev Commun. 2015, 25, 429.  doi: 10.1016/j.mencom.2015.11.010

    70. [70]

      Semenov, V. V.; Shevelev, S. A.; Bruskin, A. B.; Shakhnes, A. K.; Kuz'min, V. S. Chem. Heterocycl. Compd. 2017, 53, 728.

    71. [71]

      Dalinger, I. L.; Kormanov, A. V.; Suponitsky, K. Yu.; Muravyev, N. V.; Sheremetev, A. B. Chem. Asian J. 2018, 13, 1165.

    72. [72]

      Colburn, C. B.; Kennedy, A. J. Am. Chem. Soc. 1958, 80, 5004.

    73. [73]

      Baumgardner, C. L.; Lawton, E. L. Acc. Chem. Res. 1974, 7, 14.  doi: 10.1021/ar50073a003

    74. [74]

      Reed Jr, S. F. J. Org. Chem. 1968, 33, 1861.  doi: 10.1021/jo01269a034

    75. [75]

      Petry, R. C.; Parker, C. O.; Johnson, F. A.; Stevens, T. E.; Freeman, J. P. J. Org. Chem. 1967, 32, 1534.  doi: 10.1021/jo01280a052

    76. [76]

      Petry, R. C.; Freeman, J. P. J. Am. Chem. Soc. 1961, 83, 3912.

    77. [77]

      Gakh, A. A.; Romaniko, S. V.; Ugrak, B. I.; Fainzilberg, A. A. Tetrahedron 1991, 47, 7447.  doi: 10.1016/S0040-4020(01)89746-5

    78. [78]

      Majumder, U.; Armantrout, J. R.; Williams, R. V.; Shreeve, J. M. J. Org. Chem. 2002, 67, 8435.  doi: 10.1021/jo026201y

    79. [79]

      Belter, R. K. J. Fluorine Chem. 2012, 132, 961.

    80. [80]

      Dalinger, I. L.; Vinogradov, V. M.; Shevelev, S. A.; Kuz'min, V. S.; Arnautova, E. A.; Pivina, T. S. Propellants, Explos., Pyrotech. 1998, 23, 212.  doi: 10.1002/(SICI)1521-4087(199808)23:4<212::AID-PREP212>3.0.CO;2-Y

    81. [81]

      Fokin, A. K.; Studnev, Y. N.; Stolyarov, V. P.; Mel'nikov, A. A. Russ. Chem. Bull. 2000, 49, 949.  doi: 10.1007/BF02494724

    82. [82]

      Marsden, H. M.; Shreeve, J. M. Inorg. Chem. 1987, 26, 169.  doi: 10.1021/ic00248a033

    83. [83]

      John, E. O.; Shreeve, J. M. Inorg. Chem. 1988, 27, 3100.  doi: 10.1021/ic00291a011

    84. [84]

      John, E. O.; Kirchmeier, R. L.; Shreeve, J. M. J. Fluorine Chem. 1990, 47, 333.  doi: 10.1016/S0022-1139(00)82383-0

    85. [85]

      John, E. O.; Willett, R. D.; Scott, B.; Kirchmeier, R. L.; Shreeve, J. M. Inorg. Chem. 1989, 28, 893.  doi: 10.1021/ic00304a018

    86. [86]

      Ye, C. f.; Gao, H. X.; Shreeve, J. M. J. Fluorine Chem. 2007, 128, 1410.  doi: 10.1016/j.jfluchem.2007.07.006

    87. [87]

      Litvinov, B. V.; Fainzil'berg, A. A.; Pipekin, V. I.; Smirnov, S. P.; Loboiko, B. G.; Shevelev, S. A.; Nazin, G. M. Dokl. Akad. Nauk 1994, 336, 67.

    88. [88]

      Khisamutdinov, G. K.; Shevelev, S. A. Russ. Chem. Bull., Int. Ed. 2001, 50, 736.  doi: 10.1023/A:1011345819626

    89. [89]

      Fokin, A. V.; Studnev, Y. N.; Kuznetsova, L. D. Dokl. Akad. Nauk 1996, 3, 358

    90. [90]

      Fokin, A. V.; Studnev, Y. N.; Kuznetsova, L. Russ. Chem. Bull. 1996, 45, 1952.  doi: 10.1007/BF01457784

    91. [91]

      Zhang, M. Q.; Liu, H. Y, ; Wei, X. C.; Zhang, L.; Kang, L. Chem. Propellants Polym. Mater. 2017, 15, 45 (in Chinese).

    92. [92]

      Frankel, M. B.; Witucki, E. F. US 4341712, 1982.

    93. [93]

      Adolph, H. G.; Trivedi, N. J. US 6325876 B1, 2001.

    94. [94]

      Ammon, H. L.; Holden, J. R.; Du, Z. Structure and Density Predictions for Energetic Materials, 2002. http://www.chem.missouri.edu/thompson/MURI02/extended/Ammon_MURI_extended_abstract_4.pdf.

    95. [95]

      Baum, K.; Trivedi, N. J.; Lovato, J. M.; Iyer, V. K. Report NRO-1-1 (final), Fluorochem, Azusa, CA, 1993.

    96. [96]

      Chapman, R. D.; Welker, M. F; Kreutzberger, C. B. J. Org. Chem. 1998, 63, 1566.  doi: 10.1021/jo9718399

    97. [97]

      Chapman, R. D.; Gilardi, R. D.; Welker, M. F.; Kreutzberger, C. B. J. Org. Chem. 1999, 64, 960.  doi: 10.1021/jo9819640

    98. [98]

      Chapman, R. D.; Groshens, T. J. US 7563889 B1, 2009.

    99. [99]

      Chapman, R. D.; Groshens, T. J. US 8444783 B1, 2013.

    100. [100]

      Axenrod, T.; Guan, X. P.; Sun, J. G.; Qi, L.; Chapman, R. D.; Gilardi, R. D. Tetrahedron Lett. 2001, 42, 2621.  doi: 10.1016/S0040-4039(01)00260-X

    101. [101]

      Chapman, R. D.; Nguyen, B. V. US 6310204 B1, 2001.

    102. [102]

      Li, H. Ph.D. Dissertation, Nanjing University of Science & Technology, Nanjing, 2015 (in Chinese).

    103. [103]

      Mei, Y. M.S. Thesis, Nanjing University of Science & Technology, Nanjing, 2016 (in Chinese).

    104. [104]

      Archibald, T. G.; Manser, G. E. Immoos, J. E. US 5240311, 1995.

  • 加载中
    1. [1]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    2. [2]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    3. [3]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    4. [4]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    5. [5]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    6. [6]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    7. [7]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    8. [8]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    9. [9]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

    10. [10]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    11. [11]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    12. [12]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    13. [13]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    14. [14]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    15. [15]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    16. [16]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    17. [17]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    18. [18]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    19. [19]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    20. [20]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

Metrics
  • PDF Downloads(18)
  • Abstract views(2443)
  • HTML views(699)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return