Citation: Yao Dandan, Zhang Jinli, Xu Liang. C—N Coupling Reactions between Benzophenone Hydrazone and Aryl Chlorides and Boronic Acids[J]. Chinese Journal of Organic Chemistry, ;2020, 40(6): 1673-1679. doi: 10.6023/cjoc201912038 shu

C—N Coupling Reactions between Benzophenone Hydrazone and Aryl Chlorides and Boronic Acids

  • Corresponding author: Zhang Jinli, zhangjinli@tju.edu.cn Xu Liang, xuliang4423@shzu.edu.cn
  • Received Date: 26 December 2019
    Revised Date: 21 February 2020
    Available Online: 6 March 2020

    Fund Project: the National Natural Science Foundation of China 21963010the National Natural Science Foundation of China 21603150Project supported by the National Natural Science Foundation of China (Nos. 21603150, 21963010)

  • Palladium catalyzed Buchwald-Hartwig reactions between aryl halides and N-nucleophiles, and the copper catalyzed Chan-Evans-Lam reactions between aryl boronic acids and N-nucleophiles are all effective methods for constructing C-N bonds. Herein, under palladium acetate/tert-butanol system or copper acetate/dichloromethane system, benzophenone hydrazone can react with aryl chlorides and aryl boronic acids to afford corresponding aryl hydrazones, respectively. The obtained products are easily hydrolyzed to form aryl hydrazines, thus providing an indirect pathway to access aryl hydrazines from relatively less toxic reagents.
  • 加载中
    1. [1]

      Humphrey, G. R.; Kuethe, J. T. Chem. Rev. 2006, 106, 2875.  doi: 10.1021/cr0505270

    2. [2]

      Fustero, S.; Sánchez-Roselló, M.; Barrio, P.; Simón-Fuentes, A. Chem. Rev. 2011, 111, 6984.  doi: 10.1021/cr2000459

    3. [3]

    4. [4]

      (a) Wang, L.; Woods, K. W.; Li, Q.; Barr, K. J.; McCroskey, R. W.; Hannick, S. M.; Gherke, L.; Credo, R. B.; Hui, Y.-H.; Marsh, K.; Warner, R.; Lee, J. Y.; Zielinski-Mozng, N.; Frost, D.; Rosenberg, S. H.; Sham, H. L. J. Med. Chem. 2002, 45, 169.
      (b) Köhling, P.; Schmidt, A. M.; Eilbracht, P. Org. Lett. 2003, 5, 3213.
      (c) Kuethe, J. T.; Wong, A.; Qu, C.; Smitrovich, J.; Davies, I. W.; Hughes, D. L. J. Org. Chem. 2005, 70, 2555.
      (d) Jukes, R. T. F.; Bozic, B.; Hartl, F.; Belser, P.; De Cola, L. Inorg. Chem. 2006, 45, 8326.
      (e) Zhang, T.; Bao, W. J. Org. Chem. 2013, 78, 1317.
      (f) Dubost, E.; Stiebing, S.; Ferrary, T.; Cailly, T.; Fabis, F.; Collot, V. Tetrahedron 2014, 70, 8413.
      (g) Wei, W.; Wang, Z.; Yang, X.; Yu, W.; Chang, J. Adv. Synth. Catal. 2017, 359, 3378.

    5. [5]

      (a) Schlummer, B.; Scholz, U. Adv. Synth. Catal. 2004, 346, 1599.
      (b) Hartwig, J. F. Acc. Chem. Res. 2008, 41, 1534.
      (c) Ruiz-Castillo, P.; Buchwald, S. L. Chem. Rev. 2016, 116, 12564.

    6. [6]

      (a) Hartwig, J. F. Angew. Chem., Int. Ed. 1998, 37, 2090.
      (b) Wagaw, S.; Yang, B. H.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 10251.
      (c) Mauger, C.; Mignani, G. Adv. Synth. Catal. 2005, 347, 773.

    7. [7]

      (a) Wang, Z.; Skerlj, R. T.; Bridger, G. J. Tetrahedron Lett. 1999, 40, 3543.
      (b) Arterburn, J. B.; Rao, K. V.; Ramdas, R.; Dible, B. R. Org. Lett. 2001, 3, 1351.
      (c) Lim, Y.-K.; Lee, K.-S.; Cho, C.-G. Org. Lett. 2003, 5, 979.
      (d) Halland, N.; Nazaré, M.; Alonso, J.; R'Kyek, O.; Lindenschmidt, A. Chem. Commun. 2011, 47, 1042.

    8. [8]

      (a) Lundgren, R. J.; Stradiotto, M. Angew. Chem., Int. Ed. 2010, 49, 8686.
      (b) DeAngelis, A.; Wang, D.-H.; Buchwald, S. L. Angew. Chem., Int. Ed. 2013, 52, 3434.

    9. [9]

      Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400. (b) Bhunia, S.; Pawar, G. G.; Kumar, S. V.; Jiang, Y.; Ma, D. Angew. Chem., Int. Ed. 2017, 56, 16136.  doi: 10.1002/anie.200300594

    10. [10]

      (a) Wolter, M.; Klapars, A.; Buchwald, S. L. Org. Lett. 2001, 3, 3803.
      (b) Lam, M. S.; Lee, H. W.; Chan, A. S. C.; Kwong, F. Y. Tetrahedron Lett. 2008, 49, 6192.
      (c) Jiang, L.; Lu, X.; Zhang, H.; Jiang, Y.; Ma, D. J. Org. Chem. 2009, 74, 4542.
      (d) Xiong, X.; Jiang, Y.; Ma, D. Org. Lett. 2012, 14, 2552.

    11. [11]

      Chen, J.; Zhang, Y.; Hao, W.; Zhang, R.; Yi, F. Tetrahedron 2013, 69, 613.  doi: 10.1016/j.tet.2012.11.014

    12. [12]

      (a) Wagaw, S.; Yang, B. H.; Buchwald, S. L. J. Am. Chem. Soc. 1998, 120, 6621.
      (b) Mauger, C. C.; Mignani, G. A. Org. Process Res. Dev. 2004, 8, 1065.
      (c) Lefebvre, V.; Cailly, T.; Fabis, F.; Rault, S. J. Org. Chem. 2010, 75, 2730.
      (d) Goodyear, A.; Linghu, X.; Bishop, B.; Chen, C.; Cleator, E.; McLaughlin, M.; Sheen, F. J.; Stewart, G. W.; Xu, Y.; Yin, J. Org. Process Res. Dev. 2012, 16, 605.
      (e) Wu, W.; Fan, X.-H.; Zhang, L.-P.; Yang, L.-M. RSC Adv. 2014, 4, 3364.
      (f) Chen, Z.; Huo, Y.; An, P.; Wang, X.; Song, C.; Ma, Y. Org. Chem. Front. 2016, 3, 1725.

    13. [13]

      (a) Shen, Q.; Shekhar, S.; Stambuli, J. P.; Hartwig, J. F. Angew. Chem., Int. Ed. 2005, 44, 1371.
      (b) Tardiff, B. J.; Stradiotto, M. Eur. J. Org. Chem. 2012, 2012, 3972.

    14. [14]

    15. [15]

      (a) Liu, S.; Zu, W.; Zhang, J.; Xu, L. Org. Biomol. Chem. 2017, 15, 9288. (b) Liu, S.; Xu, L. Asian J. Org. Chem. 2018, 7, 1856.
      (c) Zu, W.; Liu, S.; Jia, X.; Xu, L. Org. Chem. Front. 2019, 6, 1356.
      (d) Liang, X.; Xu, L.; Li, C.; Jia, X.; Wei, Y. Tetrahedron 2019, 75, 721.
      (e) Liu, S.; Xu, L.; Wei, Y. J. Org. Chem. 2019, 84, 1596.

    16. [16]

      (a) Surry, D. S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 6338.
      (b) Surry, D. S.; Buchwald, S. L. Chem. Sci. 2011, 2, 27.

    17. [17]

      Li, X.; He, L.; Chen, H.; Wu, W.; Jiang, H. J. Org. Chem. 2013, 78, 3636.  doi: 10.1021/jo400162d

  • 加载中
    1. [1]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    2. [2]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    3. [3]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    4. [4]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    5. [5]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    6. [6]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    7. [7]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    8. [8]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    9. [9]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    10. [10]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    11. [11]

      Xuyu WANGXinran XIEDengke CAO . Photoreaction characteristics and luminescence modulation in phosphine-anthracene-based Au(Ⅰ) and Ir(Ⅲ) complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1513-1522. doi: 10.11862/CJIC.20250113

    12. [12]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    13. [13]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    14. [14]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    15. [15]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    16. [16]

      Xinxin Wu . 基础有机化学教学中自由基重排反应的课程设计及其课程思政元素的融入. University Chemistry, 2025, 40(6): 316-325. doi: 10.12461/PKU.DXHX202408055

    17. [17]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    18. [18]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    19. [19]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    20. [20]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

Metrics
  • PDF Downloads(11)
  • Abstract views(1034)
  • HTML views(174)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return