Citation: Yan Feng, Cai Shuang, Wen Wu, Wen Wei, Li Bojie, Wang Liansheng, Zhu Lei. Recent Advances and Applications in N-Methylation of Amines and Imines[J]. Chinese Journal of Organic Chemistry, ;2020, 40(7): 1874-1890. doi: 10.6023/cjoc201912031 shu

Recent Advances and Applications in N-Methylation of Amines and Imines

  • Corresponding author: Li Bojie, bojie.li@hbeu.edu.cn Wang Liansheng, wangls@hbeu.edu.cn Zhu Lei, lei.zhu@hbeu.edu.cn
  • Received Date: 22 December 2019
    Revised Date: 5 April 2020
    Available Online: 17 April 2020

    Fund Project: The Hubei University Excellent Young and Middle-Aged Science and Technology Innovation Team Project T201816The Opening Fund of Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica BCMM201805Project supported by the National Natural Science Foundation of China (No. 21774029), the Hubei University Excellent Young and Middle-Aged Science and Technology Innovation Team Project (No. T201816), the Opening Fund of Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica (No. BCMM201805), the Natural Science Foundation of Xiaogan City (No. XGKJ201910047), the "Chutian Scholar" Program of Hubei Province (Lei Zhu), and the High-Level Master's Thesis Cultivation Project of Hubei Engineering UniversityThe Natural Science Foundation of Xiaogan City XGKJ201910047The "Chutian Scholar" Program of Hubei Province (Lei Zhu) XGKJ201910047Project supported by the National Natural Science Foundation of China 21774029

Figures(39)

  • N-Methylation of amines and imines is one of the most important reactions for C-N bond formation. It is widely utilized for both laboratary research and industrial applications. Traditional methylation reactions involve the use of flammable, explosive and toxic starting materials. In contrast, newly developed methods have overcome this point and provide a mild strategy. In this transformation, C1 carbon source for the methyl group is important which determines the type of catalyst, reaction conditions and substrate scope. Herein, the research progress for the N-methylation of amines and imines is summarized based on different C1 carbon source.
  • 加载中
    1. [1]

      Bissember, A. C.; Lundgren, R. J.; Creutz, S. E.; Peters, J. C.; Fu, J. C. Angew. Chem., Int. Ed. 2013, 52, 5129.  doi: 10.1002/anie.201301202

    2. [2]

      Cho, S. H.; Kim, J. Y.; Lee, S. Y.; Chang, S. Angew. Chem., Int. Ed. 2009, 48, 9127.  doi: 10.1002/anie.200903957

    3. [3]

      Tanaka, R.; Yamashita, M.; Nozaki, K. J. Am. Chem. Soc. 2009, 131, 14168.  doi: 10.1021/ja903574e

    4. [4]

      Jacquet, O., Gomes, C. D. N., Ephritikhine, M.; Cantat, T. J. Am. Chem. Soc. 2012, 134, 2934.  doi: 10.1021/ja211527q

    5. [5]

      Arakara, H.; Aresta, M.; Armor, J. N.; Barteau, M. A.; Beckman, E. J.; Bell, A. T.; Bercaw, J. E.; Creutz, C.; Dinjus, E.; Dixon, D. A.; Domen, K.; DuBois, D. L.; Eckert, J.; Fujita, E.; Gibson, D. H.; Goddard, W. A.; Goodman, D. W.; Keller, J.; Kubas, G. J.; Kung, H. H.; Lyons, J. E.; Manzer·, L. E.; Marks, T. J.; Morokuma, K.; Nicholas, K. M.; Periana, R.; Que, L.; Rostrup-Nielson, J.; Sachtler, W. M. H.; Schmidt, L. D.; Sen, A.; Somorjai, G. A.; Stair, P. C.; Stults, B. R.; Tumas, W. Chem. Rev. 2001, 101, 953.  doi: 10.1021/cr000018s

    6. [6]

      Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.  doi: 10.1021/cr068357u

    7. [7]

      Wang, W.; Wang, S.-P.; Ma, X.-B.; Gong, J.-L. Chem. Soc. Rev. 2011, 40, 3703.  doi: 10.1039/c1cs15008a

    8. [8]

      Fernández-Alvarez, F. J.; Aitani, A. M.; Oro, L. A. Catal. Sci. Technol. 2014, 4, 611.  doi: 10.1039/C3CY00948C

    9. [9]

      Gomes, C. D. N.; Jacquet, O.; Villiers, C.; Thuéry, P.; Ephritikhine, M.; Cantat, T. Angew. Chem., Int. Ed. 2012, 51, 187.  doi: 10.1002/anie.201105516

    10. [10]

      Khandelwal, M.; Wehmschulte, R. J. Angew. Chem., Int. Ed. 2012, 51, 7323.  doi: 10.1002/anie.201201282

    11. [11]

      Jacquet, O.; Gomes, C. D. N.; Ephritikhine, M.; Cantat, T. ChemCatChem 2013, 5, 117.  doi: 10.1002/cctc.201200732

    12. [12]

      Li, Y.; Fang, X.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2013, 52, 9568.  doi: 10.1002/anie.201301349

    13. [13]

      Tlili, A.; Frogneux, X.; Blondiaux, E.; Cantat, T. Angew. Chem., Int. Ed. 2014, 53, 2543.  doi: 10.1002/anie.201310337

    14. [14]

      Li, Y.; Sorribes, I.; Yan, T.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2013, 52, 12156.
       

    15. [15]

      Jacquet, O.; Frognuex, X.; Gomes, C. D. N.; Cantat, T. Chem. Sci. 2013, 4, 2127.  doi: 10.1039/c3sc22240c

    16. [16]

      Blondiaux, E.; Pouessel, J.; Cantat, T. Angew. Chem., Int. Ed. 2014, 53, 12186.  doi: 10.1002/anie.201407357

    17. [17]

      Beydoun, K.; Stein, T. v.; Klankermayer, J.; Lertner, W. Angew. Chem., Int. Ed. 2013, 52, 9554.
       

    18. [18]

      Beydoun, K.; Ghattas, G.; Thenert, K.; Klankermayer, J.; Leitner, W. Angew. Chem., Int. Ed. 2014, 53, 11010.  doi: 10.1002/anie.201403711

    19. [19]

      Cui, X.; Dai, X.; Zhang, Y.; Deng, Y.; Shi, F. Chem. Sci. 2014, 5, 649.  doi: 10.1039/C3SC52676C

    20. [20]

      Cui, X.; Zhang, Y.; Deng, Y.; Shi, F. Chem. Commun. 2014, 50, 13521.  doi: 10.1039/C4CC05119J

    21. [21]

      Kon, K.; Siddiki, S. M. A. H.; Onodera, W.; Shimizu, K. Chem.- Eur. J. 2014, 20, 6264.  doi: 10.1002/chem.201400332

    22. [22]

      Yang, Z.; Yu, B.; Zhang, H.; Zhao, Y.; Ji, G.; Ma, Z.; Gao, X.; Liu, Z. Green Chem. 2015, 17, 4189.  doi: 10.1039/C5GC01386K

    23. [23]

      Yang, Z.; Yu, B.; Zhang, H.; Zhao, Y.; Ji, G.; Liu, Z. RSC Adv. 2015, 5, 19613.  doi: 10.1039/C5RA00380F

    24. [24]

      Yang, Z.; Yu, B.; Zhang, H.; Zhao, Y.; Yu, C.; Ma, Z.; Ji, G.; Gao, X.; Han, B.; Liu, Z. ACS Catal. 2016, 6, 1268.  doi: 10.1021/acscatal.5b02583

    25. [25]

      Liger, F.; Eijsbout, T.; Cadarossanesaib, F.; Tourvieille, C.; Bars, D. L.; Billard, T. Eur. J. Org. Chem. 2015, 6434.
       

    26. [26]

      Du, X.-L.; Tang, G.; Bao, H.-L.; Jiang, Z.; Zhong, X.-H.; Su, D. S.; Wang, J.-Q. ChemSusChem 2015, 8, 3489.  doi: 10.1002/cssc.201500486

    27. [27]

      Lucero, G.-S; Marcos, F.-A; Juventino, J. G. Organometallics 2015, 34, 763.  doi: 10.1021/om501176u

    28. [28]

      Santoro, O.; Lazreg, F.; Minenkov, Y.; Cavallo, L.; Cazin, C. S. J. Dalton. Trans. 2015, 44, 18138.  doi: 10.1039/C5DT03506F

    29. [29]

      Chen, W.-C.; Shen, J.-S.; Jurca, T.; Peng, C.-J.; Lin, Y.-H.; Wang, Y.-P.; Shih, W.-C.; Yap, G. P. A.; Ong, T.-G. Angew. Chem., Int. Ed. 2015, 54, 15422.
       

    30. [30]

      Nguyen, T. V. Q.; Yoo, W.-J.; Kobayashi, S. Adv. Synth. Catal. 2016, 358, 452.  doi: 10.1002/adsc.201500875

    31. [31]

      Liu, X.-F.; Li, X.-Y.; Qiao, C.; Fu, H.-C.; He, L.-N. Angew. Chem., Int. Ed. 2017, 56, 7425.  doi: 10.1002/anie.201702734

    32. [32]

      Li, G.; Chen, J.; Zhu, D.-Y.; Chen, Y.; Xia, J.-B. Adv. Synth. Catal. 2018, 360, 2364.  doi: 10.1002/adsc.201800140

    33. [33]

      Sorribes, I.; Junge, K.; Beller, M. Chem.-Eur. J. 2014, 20, 7878.  doi: 10.1002/chem.201402124

    34. [34]

      Savourey, S.; Lefèvre, G.; Berthet, J.-C.; Cantat, T. Chem. Commun. 2014, 50, 14033.  doi: 10.1039/C4CC05908E

    35. [35]

      Fu, M.-S.; Shang, R.; Cheng, W.-M.; Fu, Y. Angew. Chem., Int. Ed. 2015, 54, 9042.  doi: 10.1002/anie.201503879

    36. [36]

      Zhu, L.; Li, B.-J.; Wang, S.; Wang, W.; Wang, L.-S.; Ding, L.; Qin, C.-Q. Polymers 2018, 10, 385.  doi: 10.3390/polym10040385

    37. [37]

      Wen, W.; Han, B.; Yan, F.; Ding, L.; Li, B.-J.; Wang, L.-S.; Zhu, L. Nanomaterials 2018, 8, 326.  doi: 10.3390/nano8050326

    38. [38]

      Zhu, L.; Wang, L.-S.; Li, B.-J.; Li. W.; Fu. B.-Q. Catal. Sci. Technol. 2016, 6, 6172.  doi: 10.1039/C6CY00674D

    39. [39]

      Andrew, K. G.; Summers, D. M.; Donnelly, L. J.; Denton, R. M. Chem. Commun. 2016, 52, 1855.  doi: 10.1039/C5CC08881J

    40. [40]

      Qiao, C.; Liu, X.-F.; Liu, X.; He, L.-N. Org. Lett. 2017, 19, 1490.  doi: 10.1021/acs.orglett.7b00551

    41. [41]

      Natte, K.; Neumann, H.; Beller, M.; Jagadeesh, R. V. Angew. Chem., Int. Ed. 2017, 56, 6384.  doi: 10.1002/anie.201612520

    42. [42]

      Chen, Y. Chem.-Eur. J. 2019, 25, 3405.  doi: 10.1002/chem.201803642

    43. [43]

      Dominguez-Huerta A.; Dai X.-J.; Zhou, F.; Querard, P.; Qiu, Z.; Ung, S.; Liu, W.; Li, J.-B.; Li, C.-J. Can. J. Chem. 2019, 97, 67.
       

    44. [44]

      Xu, C.-P.; Xiao, Z.-H.; Zhuo, B.-Q.; Wang, Y.-H.; Huang, P.-Q. Chem. Commun. 2010, 46, 7834.  doi: 10.1039/c0cc01487g

    45. [45]

      Yan, T.; Feringa, B. L.; Barta, K. Sci. Adv. 2017, 3, eaao6494.  doi: 10.1126/sciadv.aao6494

    46. [46]

      Zhang, L.; Zhang, Y.; Deng, Y.; Shi, F. RSC. Adv. 2015, 5, 14514.  doi: 10.1039/C4RA13848A

    47. [47]

      Tsarev, V. N.; Morioka, Y.; Caner, J.; Wang, Q.; Ushimaru, R.; Kudo, A.; Naka, H.; Saito, S. Org. Lett. 2015, 17, 2530.  doi: 10.1021/acs.orglett.5b01063

    48. [48]

      Dang, T. T.; Ramalingam, B.; Seayad, A. M. ACS Catal. 2015, 5, 4082.  doi: 10.1021/acscatal.5b00606

    49. [49]

      Campos, J.; Sharninghausen, L. S.; Manas, M. G.; Crabtree, R. H. Inorg. Chem. 2015, 54, 5079.  doi: 10.1021/ic502521c

    50. [50]

      Elangovan, S.; Neumann, J.; Sortais, J.-B.; Junge, K.; Darcel, C.; Beller, M. Nat. Commun. 2016, 7, 12641.  doi: 10.1038/ncomms12641

    51. [51]

      Bruneau-Voisine, A.; Wang, D.; Dorcet, V.; Roisnel, T.; Darcel, C.; Sortais, J.-B. J. Catal. 2017, 347, 57.  doi: 10.1016/j.jcat.2017.01.004

    52. [52]

      Liu, Z.; Yang, Z.; Yu, X.; Zhang, H.; Yu, B.; Zhao, Y.; Liu, Z. Adv. Synth. Catal. 2017, 359, 4278.  doi: 10.1002/adsc.201701044

    53. [53]

      Goyal, V.; Gahtori, J.; Narani, A.; Gupta, P.; Bordoloi, A.; Natte, K. J. Org. Chem. 2019, 84, 15389.  doi: 10.1021/acs.joc.9b02141

    54. [54]

      Liang, R.; Li, S.; Wang, R.; Lu, L.; Li, F. Org. Lett. 2017, 19, 5790.  doi: 10.1021/acs.orglett.7b02723

    55. [55]

      Zhu, L.; Wang, L.-S.; Li, B.-J.; Fu, B.-Q.; Zhang, C.-Q.; Li, W. Chem. Commun. 2016, 52, 6371.  doi: 10.1039/C6CC01944G

    56. [56]

      Jiang, X.; Wang, C.; Wei, Y.; Xue, D.; Liu, Z.; Xiao, J. Chem.-Eur. J. 2014, 20, 58.  doi: 10.1002/chem.201303802

    57. [57]

      Wang, H.; Huang, Y.; Dai, X.; Shi, F. Chem. Commun. 2017, 53, 5542.  doi: 10.1039/C7CC02314F

    58. [58]

      Ge, X.; Luo, C.; Qian, C.; Yu, Z.; Chen, X. RSC Adv. 2014, 4, 43195.  doi: 10.1039/C4RA04414B

    59. [59]

      Li, Y.; Sorribes, I.; Vicent, C.; Junge, K.; Beller, M. Chem.-Eur. J. 2015, 21, 16759.  doi: 10.1002/chem.201502917

  • 加载中
    1. [1]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    2. [2]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    3. [3]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    4. [4]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    5. [5]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    7. [7]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    8. [8]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    9. [9]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    10. [10]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    11. [11]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    12. [12]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    13. [13]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    14. [14]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    15. [15]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    16. [16]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    17. [17]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    18. [18]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    19. [19]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    20. [20]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

Metrics
  • PDF Downloads(79)
  • Abstract views(5042)
  • HTML views(1346)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return