Citation: Zhang Longfei, Niu Cong, Yang Xiaoting, Qin Hongyun, Yang Jianjing, Wen Jiangwei, Wang Hua. Recent Advances on the Photocatalytic and Electrocatalytic Thiocyanation Reactions[J]. Chinese Journal of Organic Chemistry, ;2020, 40(5): 1117-1128. doi: 10.6023/cjoc201912011 shu

Recent Advances on the Photocatalytic and Electrocatalytic Thiocyanation Reactions

  • Corresponding author: Wen Jiangwei, wenjy@qfnu.edu.cn Wang Hua, huawang@qfnu.edu.cn
  • Received Date: 9 December 2019
    Revised Date: 9 January 2020
    Available Online: 21 January 2020

    Fund Project: the National Natural Science Foundation of China 21902083the Qufu Normal University Research Startup Fund 6132the College Students Innovation and Entrepreneurship Training Project of Shandong Province S201910446044the Major Basic Research Program of Natural Science Foundation of Shandong Province ZR2018ZC0129the National Natural Science Foundation of China 21675099Project supported by the National Natural Science Foundation of China (Nos. 21902083, 21675099), the Major Basic Research Program of Natural Science Foundation of Shandong Province (No. ZR2018ZC0129), the College Students Innovation and Entrepreneurship Training Project of Shandong Province (No. S201910446044) and the Qufu Normal University Research Startup Fund (Nos. 6132, 6125)the Qufu Normal University Research Startup Fund 6125

Figures(34)

  • Thiocyanate, as a versatile synthon, which has important application value in many fields such as pharmaceutical, pesticide and materials. The photocatalytic and electrocatalytic thiocyanation reactions have been widely concerned in organic chemistry due to the advantages of green, efficiency and safety. In this review, the cross-coupling/thiocyanation reactions based on the photocatalytic and electrocatalytic are described, which is expected to be helpful in exploring the green synthesis of thiocyanates compounds.
  • 加载中
    1. [1]

      (a) Capon, R. J.; Skene, C.; Liu, E. H.-T.; Lacey, E.; Gill, J. H.; Heiland, K.; Friedel, T. J. Org. Chem. 2001, 66, 7765.
      (b) Dutta, S.; Abe, H.; Aoyagi, S.; Kibayashi, C.; Gates, K. S. J. Am. Chem. Soc. 2005, 127, 15004.
      (c) Elhalem, E.; Bailey, B. N.; Docampo, R.; Ujváry, I.; Szajnman, S. H.; Rodriguez, J. B. J. Med. Chem. 2002, 45, 3984.
      (d) Kokorekin, V.; Terent'ev, A.; Ramenskaya, G.; Grammatikova, N.; Rodionova, G.; Ilovaiskii, A. Pharm. Chem. J. 2013, 47, 422.
      (e) Yasman, Y.; Edrada, R. A.; Wray, V.; Proksch, P. J. Nat. Prod. 2003, 66, 1512.

    2. [2]

      (a) Khalili, D. Chin. Chem. Lett. 2015, 26, 547.
      (b) Zeng, Y.-F.; Tan, D.-H.; Chen, Y.; Lv, W.-X.; Liu, X.-G.; Li, Q.; Wang, H. Org. Chem. Front. 2015, 2, 1511.
      (c) Guo, L.-N.; Gu, Y.-R.; Yang, H.; Hu, J. Org. Biomol. Chem. 2016, 14, 3098.
      (d) Khalili, D. New J. Chem. 2016, 40, 2547.
      (e) Chen, Q.; Lei, Y.; Wang, Y.; Wang, C.; Wang, Y.; Xu, Z.; Wang, H.; Wang, R. Org. Chem. Front. 2017, 4, 369.
      (f) Ji, F.; Fan, Y.; Yang, R.; Yang, Y.; Yu, D.; Wang, M.; Li, Z. Asian J. Org. Chem. 2017, 6, 682.
      (g) Jiang, G.; Zhu, C.; Li, J.; Wu, W.; Jiang, H. Adv. Synth. Catal. 2017, 359, 1208.
      (h) Prieto, A.; Uzel, A.; Bouyssi, D.; Monteiro, N. Eur. J. Org. Chem. 2017, 2017, 4201.
      (i) Chen, Y.; Wang, S.; Jiang, Q.; Cheng, C.; Xiao, X.; Zhu, G. J. Org. Chem. 2018, 83, 716.
      (j) Khaikate, O.; Meesin, J.; Pohmakotr, M.; Reutrakul, V.; Leowanawat, P.; Soorukram, D.; Kuhakarn, C. Org. Biomol. Chem. 2018, 16, 8553.
      (k) Qiu, J.; Wu, D.; Karmaker, P. G.; Yin, H.; Chen, F.-X. Org. Lett. 2018, 20, 1600.
      (l) Wu, C.; Lu, L.-H.; Peng, A.-Z.; Jia, G.-K.; Peng, C.; Cao, Z.; Tang, Z.; He, W.-M.; Xu, X. Green Chem. 2018, 20, 3683.
      (m) Dey, A.; Hajra, A. Adv. Synth. Catal. 2019, 361, 842.
      (n) Noikham, M.; Yotphan, S. Eur. J. Org. Chem. 2019, 2019, 2759.

    3. [3]

      Castanheiro, T.; Suffert, J.; Donnard, M.; Gulea, M. Chem. Soc. Rev. 2016, 45, 494.  doi: 10.1039/C5CS00532A

    4. [4]

      Vekariya, R. H.; Patel, H. D. Synth. Commun. 2017, 47, 87.  doi: 10.1080/00397911.2016.1255973

    5. [5]

    6. [6]

    7. [7]

      Yadav, A. K.; Yadav, L. D. S. Tetrahedron Lett. 2015, 56, 6696.  doi: 10.1016/j.tetlet.2015.10.048

    8. [8]

      Yuan, P.-F.; Zhang, Q.-B.; Jin, X.-L.; Lei, W.-L.; Wu, L.-Z.; Liu, Q. Green Chem. 2018, 20, 5464.  doi: 10.1039/C8GC02720J

    9. [9]

      Guy, R. G.; Thompson, J. J. Tetrahedron 1978, 34, 541.  doi: 10.1016/0040-4020(78)80049-0

    10. [10]

      Chen, Y.-J.; He, Y.-H.; Guan, Z. Tetrahedron 2019, 75, 3053.  doi: 10.1016/j.tet.2019.04.053

    11. [11]

      Zhang, D.; Wang, H.; Bolm, C. Chem. Commun. 2018, 54, 5772.  doi: 10.1039/C8CC03178A

    12. [12]

      Gao, Y.; Liu, Y.; Wan, J.-P. J. Org. Chem. 2019, 84, 2243.  doi: 10.1021/acs.joc.8b02981

    13. [13]

      Fan, W.; Yang, Q.; Xu, F.; Li, P. J. Org. Chem. 2014, 79, 10588.  doi: 10.1021/jo5015799

    14. [14]

      Wang, L.; Wang, C.; Liu, W.; Chen, Q.; He, M. Tetrahedron Lett. 2016, 57, 1771.  doi: 10.1016/j.tetlet.2016.03.028

    15. [15]

      Hosseini-Sarvari, M.; Hosseinpour, Z.; Koohgard, M. New J. Chem. 2018, 42, 19237.  doi: 10.1039/C8NJ03128B

    16. [16]

      Yang, D.; Yan, K.; Wei, W.; Li, G.; Lu, S.; Zhao, C.; Tian, L.; Wang, H. J. Org. Chem. 2015, 80, 11073.  doi: 10.1021/acs.joc.5b01637

    17. [17]

      Mitra, S.; Ghosh, M.; Mishra, S.; Hajra, A. J. Org. Chem. 2016, 47, 8275.

    18. [18]

      Singh, M.; Yadav, A. K.; Yadav, L. D. S.; Singh, R. Synlett 2018, 29, 176.  doi: 10.1055/s-0036-1590921

    19. [19]

      Chauhan, P.; Ritu, R.; Preeti, P.; Kumar, S.; Jain, N. Eur. J. Org. Chem. 2019, 2019, 4334.

    20. [20]

      Tambe, S. D.; Jadhav, M. S.; Rohokale, R. S.; Kshirsagar, U. A. Eur. J. Org. Chem. 2018, 2018, 4867.

    21. [21]

      Gullapalli, K.; Vijaykumar, S. Org. Biomol. Chem. 2019, 17, 2232.  doi: 10.1039/C9OB00054B

    22. [22]

      (a) Zhao, Y.; Wang, H.; Hou, X.; Hu, Y.; Lei, A.; Zhang, H.; Zhu, L. J. Am. Chem. Soc. 2006, 128, 15048.
      (b) Li, C.-J. Acc. Chem. Res. 2009, 42, 335.
      (c) Chen, M.; Zheng, X.; Li, W.; He, J.; Lei, A. J. Am. Chem. Soc. 2010, 132, 4101.
      (d) Le Bras, J.; Muzart, J. Chem. Rev. 2011, 111, 1170.
      (e) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111, 1780.
      (f) Shi, W.; Liu, C.; Lei, A. Chem. Soc. Rev. 2011, 40, 2761.
      (g) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215.
      (h) He, C.; Guo, S.; Ke, J.; Hao, J.; Xu, H.; Chen, H.; Lei, A. J. Am. Chem. Soc. 2012, 134, 5766.
      (i) Girard, S. A.; Knauber, T.; Li, C. J. Angew. Chem., Int. Ed. 2014, 53, 74.
      (j) Liu, C.; Liu, D.; Lei, A. Acc. Chem. Res. 2014, 47, 3459.
      (k) Liu, C.; Yuan, J.; Gao, M.; Tang, S.; Li, W.; Shi, R.; Lei, A. Chem. Rev. 2015, 115, 12138.
      (l) Zhang, G.; Liu, C.; Yi, H.; Meng, Q.; Bian, C.; Chen, H.; Jian, J.-X.; Wu, L.-Z.; Lei, A. J. Am. Chem. Soc. 2015, 137, 9273.
      (m) Song, C.; Yi, H.; Dou, B.; Li, Y.; Singh, A. K.; Lei, A. Chem. Commun. 2017, 53, 3689.
      (n) Song, C.; Dong, X.; Yi, H.; Chiang, C.-W.; Lei, A. ACS Catal. 2018, 8, 2195.
      (o) Song, C.; Liu, K.; Dong, X.; Chiang, C.-W.; Lei, A. Synlett 2019, 30, 1149.

    23. [23]

      Kang, L.-S.; Luo, M.-H.; Lam, C. M.; Hu, L.-M.; Little, R. D.; Zeng, C.-C. Green Chem. 2016, 18, 3767.  doi: 10.1039/C6GC00666C

    24. [24]

      Liang, S.; Zeng, C. C.; Tian, H.; Sun, B.; Ren, F. Adv. Synth. Catal. 2018, 360, 1444.  doi: 10.1002/adsc.201701401

    25. [25]

      De Klein, W. J. Electrochim. Acta 1973, 18, 413.  doi: 10.1016/0013-4686(73)80044-1

    26. [26]

      Levy, A.; Becker, J. Y. Electrochim. Acta 2015, 178, 294.  doi: 10.1016/j.electacta.2015.07.127

    27. [27]

      Gitkis, A.; Becker, J. Y. Electroanalysis 2016, 28, 2802.  doi: 10.1002/elan.201600197

    28. [28]

      Wen, J.; Zhang, L.; Yang, X.; Niu, C.; Wang, S.; Wei, W.; Sun, X.; Yang, J.; Wang, H. Green Chem. 2019, 21, 3597.  doi: 10.1039/C9GC01351B

    29. [29]

      Krishnan, P.; Gurjar, V. G. Synth. Commun. 1992, 22, 2741.  doi: 10.1080/00397919208021538

    30. [30]

      Krishnan P., Gurjar V. G.. J.[J]. Appl. Electrochem., 1995,25(792).  

    31. [31]

      Gitkis, A.; Becker, J. Y. J. Electroanal. Chem. 2006, 593, 29.
       

    32. [32]

      Gitkis, A.; Becker, J. Y. Electrochim. Acta 2010, 55, 5854.  doi: 10.1016/j.electacta.2010.05.035

    33. [33]

      (a) Nair, V.; George, T. G.; Nair, L. G.; Panicker, S. B. Tetrahedron Lett. 1999, 40, 1195.
      (b) Chakrabarty, M.; Sarkar, S. Tetrahedron Lett. 2003, 44, 8131.
      (c) Yadav, J.; Reddy, B.; Shubashree, S.; Sadashiv, K. Tetrahedron Lett. 2004, 45, 2951.
      (d) Yadav, J.; Reddy, B.; Krishna, A.; Reddy, C. S.; Narsaiah, A. Synthesis 2005, 2005, 961.
      (e) Pan, X.-Q.; Lei, M.-Y.; Zou, J.-P.; Zhang, W. Tetrahedron Lett. 2009, 50, 347.
      (f) Akhlaghinia, B.; Pourali, A.-R.; Rahmani, M. Synth. Commun. 2012, 42, 1184.
      (g) Khazaei, A.; Zolfigol, M. A.; Mokhlesi, M.; Panah, F. D.; Sajjadifar, S. Helv. Chim. Acta 2012, 95, 106.

    34. [34]

      Fotouhi, L.; Nikoofar, K. Tetrahedron Lett. 2013, 54, 2903.  doi: 10.1016/j.tetlet.2013.02.106

    35. [35]

      Kokorekin, V. A.; Sigacheva, V. L.; Petrosyan, V. A. Tetrahedron Lett. 2014, 55, 4306.  doi: 10.1016/j.tetlet.2014.06.028

    36. [36]

      Zhang, X.; Wang, C.; Jiang, H.; Sun, L. RSC Adv. 2018, 8, 22042.  doi: 10.1039/C8RA04407D

    37. [37]

      Yaubasarova, R. R.; Kokorekin, V. A.; Ramenskaya, G. V.; Petrosyan, V. A. Mendeleev Commun. 2019, 29, 334.  doi: 10.1016/j.mencom.2019.05.032

    38. [38]

      Sun, L.; Zhang, X.; Li, Z.; Ma, J.; Zeng, Z.; Jiang, H. Eur. J. Org. Chem. 2018, 2018, 4949.  doi: 10.1002/ejoc.201800267

    39. [39]

      Kokorekin, V. A.; Yaubasarova, R. R.; Neverov, S. V.; Petrosyan, V. A. Mendeleev Commun. 2016, 5, 413.

    40. [40]

      Kokorekin, V. A.; Yaubasarova, R. R.; Neverov, S. V.; Petrosyan, V. A. Eur. J. Org. Chem. 2019, 2019, 4233.  doi: 10.1002/ejoc.201900390

    41. [41]

      Dyga, M.; Hayrapetyan, D.; Rit, R. K.; Gooßen, L. J. Adv. Synth. Catal. 2019, 361, 3548.  doi: 10.1002/adsc.201900156

    42. [42]

      Yang, S.-M.; He, T.-J.; Lin, D.-Z.; Huang, J.-M. Org. Lett. 2019, 21, 1958.  doi: 10.1021/acs.orglett.8b04136

  • 加载中
    1. [1]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    2. [2]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    3. [3]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    4. [4]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    5. [5]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    6. [6]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    7. [7]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    8. [8]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    9. [9]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    10. [10]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    11. [11]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    12. [12]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    13. [13]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    14. [14]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    15. [15]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    16. [16]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    17. [17]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    18. [18]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    19. [19]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    20. [20]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

Metrics
  • PDF Downloads(54)
  • Abstract views(3275)
  • HTML views(947)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return