Citation: Ren Haiping, Tian Zaiwen, Li Ke, Zhang Wanxuan. Hydroamination of Propiolic Derivatives with N-Fluorobenzene-sulfonimide Catalyzed by Silver Carbonate[J]. Chinese Journal of Organic Chemistry, ;2020, 40(5): 1310-1315. doi: 10.6023/cjoc201912001 shu

Hydroamination of Propiolic Derivatives with N-Fluorobenzene-sulfonimide Catalyzed by Silver Carbonate

  • Corresponding author: Zhang Wanxuan, zhangwx@hubu.edu.cn
  • Received Date: 1 December 2019
    Revised Date: 9 January 2020
    Available Online: 21 January 2020

    Fund Project: the Key Laboratory for the Synthesis and Applicationof Organic Functional Molecules, Ministry of Education KLSAOFM1912Project supported by the Key Laboratory for the Synthesis and Applicationof Organic Functional Molecules, Ministry of Education (No. KLSAOFM1912)

Figures(1)

  • Amination using N-fluorobenzenesulfonimide (NFSI) as nitrogen source has become an important route to prepare amines. However, there are few methods to prepare N-vinyl sulfonimides using NFSI as nitrogen source. In the presence of Na2HPO4, the hydroamination of propiolates or propiolamides with N-fluorobenzenesulfonimide (NFSI) was realized, where Ag2CO3 and 1, 10-phenanthroline derivatives were added as catalysts. It leads to N-vinyldibenzenesulfonimides in high selectivity of Z isomers in the yields of 35%~71%.
  • 加载中
    1. [1]

      For selected examples: (a) Xiong, T.; Li, Y.; Lv, Y.; Zhang, Q. Chem. Commun. 2010, 46, 6831.
      (b) Sun, K.; Li, Y.; Xiong, T.; Zhang, J.; Zhang, Q. J. Am. Chem. Soc. 2011, 133, 1694.
      (c) Boursalian, G. B.; Ngai, M.-Y.; Hojczyk, K. N.; Ritter, T. J. Am. Chem. Soc. 2013, 135, 13278.
      (d) Ni, Z.-K.; Zhang, Q.; Xiong, T.; Zheng, Y.-Y.; Li, Y.; Zhang, H.-W.; Zhang, J.-P.; Liu, Q. Angew. Chem., Int. Ed. 2012, 51, 1244.
      (e) Wang. S.; Ni, Z.; Huang, X.; Wang, J.; Pan, Y. Org. Lett. 2014, 16, 5648.
      (f) Kawakami, T.; Murakami, K.; Itami, K. J. Am. Chem. Soc. 2015, 137, 2460.
      (g) Wang, X.; Lei, B.; Ma, L.; Jiao, H.; Xing, W.; Chen, J.; Li, Z. Adv. Synth. Catal. 2017, 359, 4284.
      (h) Yin, Y.; Xie, J.; Huang, F.-Q.; Qi, L.-W.; Zhang, B. Adv. Synth. Catal. 2017, 359, 1037.
      (i) Xie, J.; Wang, Y.-W.; Qi, L.-W.; Zhang, B. Org. Lett. 2017, 19, 1148.
      (j) Jin, L.; Zeng, X.; Li, S.; Hong, X.; Qiu, G.; Liu, P. Chem. Commun. 2017, 53, 3986.
      (k) Miao, L.; Shao, Z.; Shi, C.; Ma, L.; Wang, F.; Fu, R.; Gao, H.; Li, Z. Chem. Commun. 2019, 55, 7331.

    2. [2]

      For selected examples: (a) Trenner, J.; Depken, C.; Weber, T.; Breder, A. Angew. Chem., Int. Ed. 2013, 52, 8952.
      (b) Zhang, H.; Pu, W.; Xiong, T.; Li, Yan.; Zhou, X.; Sun, K.; Liu, Q.; Zhang, Q. Angew. Chem., Int. Ed. 2013, 52, 2529.
      (c) Zhang, B.; Studer, A. Org. Lett. 2014, 16, 1790.
      (d) Zheng, G.; Li, Y.; Han, J.; Xiong, T.; Zhang, Q. Nat. Comum. 2015, 6, 7011.
      (e) Qiu, S.; Xu, T.; Zhou, J.; Guo, Y.; Liu, G. J. Am. Chem. Soc. 2010, 132, 2856.
      (f) Sun, J.; Zheng, G.; Xiong, T.; Zhang, Q.; Zhao, J.; Zhang, Q.; Li, Y. ACS Catal. 2016, 6, 3674.
      (g) Xia, X.-F.; Zhu, S.-L.; Liu, J.-B.; Wang, D.; Liang, Y.-M. J. Org. Chem. 2016, 81, 12482.
      (h) Weng, S.-S.; Zhang, J.-W. ChemCatChem 2016, 8, 3720.
      (i) Wang, D.; Wang, F.; Chen, P.; Lin, Z.; Liu, G. Angew. Chem., Int. Ed. 2017, 56, 2054.
      (j) Li, D.; Mao, T.; Huang, J.; Zhu, Q. Chem. Commun. 2017, 53, 3450.
      (k) Weng, W.-Z.; Sun, J.-G.; Li, P.; Zhang, B. Chem.-Eur. J. 2017, 23, 9752.
      (l) Reddy, C. R.; Prajapti, S. K.; Ranjan, R. Org. Lett. 2018, 20, 3128.
      (m) Lei, B.; Wang, X.; Ma, L.; Li, Y.; Li, Z. Org. Biomol. Chem. 2018, 16, 3109.
      (n) Lei, B.; Miao, Q.; Ma, L.; Fu, R.; Hu, F.; Nia, N.; Li, Z. Org. Biomol. Chem. 2019, 17, 2126.

    3. [3]

      (a) Zhang, G.; Zheng, G.; Xu, G.; Zhang, Q.; Xiong, T.; Zhang, Q. Org. Chem. Front. 2017, 4, 1420.
      (b) Yang, Z.; Yang, S.; Haroone, M. S.; He, W.; Xu, J. Tetrahedron 2017, 73, 3338.
      (c) Deng, Z.; Wei, J.; Liao, L.; Huang, H.; Zhao, X. Org. Lett. 2015, 17, 1834.

    4. [4]

      (a) Zheng, G.; Zhao, J.; Li, Z.; Zhang, Q.; Sun, J.; Sun, H.; Zhang, Q. Chem. Eur. J. 2016, 22, 3513.
      (b) Wang, Y.; Liu, L.; Wang, G.; Ouyang, H.; Ji, L. Y. Green Chem. 2018, 20, 604.

    5. [5]

      (a) Wang, W.; Liu, L.; Chang, W.; Li, J. Chem.-Eur. J. 2018, 24, 8542.
      (b) Sun, J.; Zheng, G.; Fu, Y.; Wang, L.; Li, Y.; Zhang, Q. Org. Lett. 2018, 20, 5597.

    6. [6]

      Hall, J. R.; Plowman, R. A.; Prest, H. S. Aust. J. Chem. 1965, 18, 1345.  doi: 10.1071/CH9651345

    7. [7]

      (a) Zhang, C.; Li, Z.; Zhu, L.; Yu, L.; Wang, Z.; Li, C. J. Am. Chem. Soc. 2013, 135, 14082.
      (b) Li, Z.; Song, L.; Li, C. J. Am. Chem. Soc. 2013, 135, 4640.
      (c) Tang, P.; Furuya, T.; Ritter T. J. Am. Chem. Soc. 2010, 132, 12150.
      (d) Liang, T.; Neumann, C. N.; Ritter T. Angew. Chem., Int. Ed. 2013, 52, 8214.

    8. [8]

      Stetter, H.; Hansmann, H. Chem. Ber. 1957, 90, 2728.  doi: 10.1002/cber.19570901204

    9. [9]

    10. [10]

      (a) Yang, Z.; Yang, S.; Xu, J. Tetrahedron 2017, 73, 3240.
      (b) Differding, E.; Ofner, H. Synlett 1991, 187.

  • 加载中
    1. [1]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    2. [2]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    3. [3]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    4. [4]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

    5. [5]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    6. [6]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    7. [7]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    8. [8]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    9. [9]

      Jingjie Tang Luying Xie Jiayu Liu Shangyu Shi Xinyu Sun Jiayang Lin Qikun Yang Chuan'ang Yu Zecheng Wang Yingying Wang Zengyang Xie . Efficient Rapid Synthesis and Antibacterial Activities of Tosylhydrazones: A Recommended Innovative Chemistry Experiment for Undergraduate Medical University. University Chemistry, 2024, 39(3): 316-326. doi: 10.3866/PKU.DXHX202309091

    10. [10]

      Kexin Feng Jie Zhang Yujia Sun Qiong Ai Longchun Li . 乙酰二茂铁和二茂铁甲酰丙酮的合成、纯化及表征. University Chemistry, 2025, 40(8): 307-314. doi: 10.12461/PKU.DXHX202409045

    11. [11]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    12. [12]

      Cong-Bin JiDing-Xiong XieMei ChenYe-Ying LanBao-Hua ZhangJi-Ying YangZheng-Hui KangShu-Jie ChenYu-Wei ZhangYun-Lin Liu . Green synthesis of 2-trifluoromethylquinoline skeletons via organocatalytic N-[(α-trifluoromethyl)vinyl]isatins CN bond activation. Chinese Chemical Letters, 2025, 36(7): 110598-. doi: 10.1016/j.cclet.2024.110598

    13. [13]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    14. [14]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    15. [15]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    16. [16]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    17. [17]

      Jiaxin SuJiaqi ZhangShuming ChaiYankun WangSibo WangYuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-0. doi: 10.3866/PKU.WHXB202408012

    18. [18]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    19. [19]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    20. [20]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

Metrics
  • PDF Downloads(9)
  • Abstract views(1811)
  • HTML views(361)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return