Citation: Ouyang Banlai, Zheng Yanxia, Xia Kejian, Xu Xiaoling, Wang Yi. Recent Progress in Transition Metal Catalyzed Sulfonamidation of Aromatic Compounds[J]. Chinese Journal of Organic Chemistry, ;2020, 40(5): 1188-1205. doi: 10.6023/cjoc201910002 shu

Recent Progress in Transition Metal Catalyzed Sulfonamidation of Aromatic Compounds

  • Corresponding author: Ouyang Banlai, blouyang@qq.com
  • Received Date: 5 October 2019
    Revised Date: 16 December 2019
    Available Online: 3 January 2020

    Fund Project: the Open Project Program of Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Normal University KLFS-KF-201721the Science and Technology Project of the Education Department of Jiangxi Province GJJ161235Project supported by the Open Project Program of Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Normal University (No. KLFS-KF-201721) and the Science and Technology Project of the Education Department of Jiangxi Province (No. GJJ161235)

Figures(51)

  • The N-arylsulfonamide group is an important moiety in medicinal chemistry because of its presence in many useful molecules with potential bioactivities. As a result, the development of synthetic routes to N-arylsulfonamides has been actively investigated. In recent years, the transition metal-catalyzed sulfonamidations of aryl halides, arylboronic acids and CAr-H bonds have extensively investigated, providing more efficient and environmentally friendly procedures for the synthesis of N-arylsulfonamides. The recent progress in the transition metal-catalyzed sulfonamidation reactions is reviewed. The aromatic substrates, transition metal-catalysts, ligands, sulfonamidating reagents, mechanisms of the sulfonamidation reactions are mainly discussed. Finally, the future development of them is also prospected.
  • 加载中
    1. [1]

    2. [2]

      (a) Skipper, P. L.; Kim, M. Y.; Sun, H. L.; Wogan, G. N.; Tannenbaum, S. R. Carcinogenesis 2010, 31, 50.
      (b) Snodin, D. J. Org. Process Res. Dev. 2010, 14, 960.

    3. [3]

      Yasuhara, A.; Kameda, M.; Sakamoto, T. Chem. Pharm. Bull. 1999, 47, 809.  doi: 10.1248/cpb.47.809

    4. [4]

      Fang, S.; Lü, M.; Long, Y.; Yang, D. Chin. J. Org. Chem. 2011, 31, 1573(in Chinese).
       

    5. [5]

    6. [6]

      Wolfe, J. P.; Rennels, R. A.; Buchwald, S. L. Tetrahedron 1996, 52, 7525.  doi: 10.1016/0040-4020(96)00266-9

    7. [7]

      (a) Yin, J.; Buchwald, S. L. Org. Lett. 2000, 2, 1101.
      (b) Yin, J.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 6043.

    8. [8]

      Burton, G.; Cao, P.; Li, G.; Rivero, R. Org. Lett. 2003, 5, 4373.  doi: 10.1021/ol035655u

    9. [9]

      Ikawa, T.; Barder, T. E.; Biscoe, M. R.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 13001.  doi: 10.1021/ja0717414

    10. [10]

      Hicks, J. D.; Hyde, A. M.; Cuezva, A. M.; Buchwald, S. L. J. Am. Chem. Soc. 2009, 131, 16720.  doi: 10.1021/ja9044357

    11. [11]

      Rosen, B. R.; Ruble, J. C.; Beauchamp, T. J.; Navarro, A. Org. Lett. 2011, 13, 2564.  doi: 10.1021/ol200660s

    12. [12]

      Laffoon, S. D.; Chan, V. S.; Fickes, M. G.; Kotecki, B. J.; Ickes, A.; Henle, J.; Napolitano, J. G.; Franczyk, T. S.; Dunn, T. B.; Barnes, D. M.; Haight, A. R.; Henry, R. F.; Shekhar, S. ACS Catal. 2019, 9, 11691.  doi: 10.1021/acscatal.9b03012

    13. [13]

      He, H.; Wu, Y.-J. Tetrahedron Lett. 2003, 44, 3385.  doi: 10.1016/S0040-4039(03)00569-0

    14. [14]

      Tan, B. Y.-H.; Teo, Y.-C.; Seow, A.-H. Eur. J. Org. Chem. 2014, 2014, 1541.  doi: 10.1002/ejoc.201301561

    15. [15]

      Deng, W.; Liu, L.; Zhang, C.; Liu, M.; Guo, Q.-X. Tetrahedron Lett. 2005, 46, 7295.  doi: 10.1016/j.tetlet.2005.08.149

    16. [16]

      Baffoe, J.; Hoe, M. Y.; Toure, B. B. Org. Lett. 2010, 12, 1532.  doi: 10.1021/ol100263r

    17. [17]

      Wang, X.; Guram, A.; Ronk, M.; Milne, J. E.; Tedrow, J. S.; Faul, M. M. Tetrahedron Lett. 2012, 53, 7.  doi: 10.1016/j.tetlet.2011.10.113

    18. [18]

      Han, X. Tetrahedron Lett. 2010, 51, 360.  doi: 10.1016/j.tetlet.2009.11.037

    19. [19]

      Kim, T.; McCarver, S. J.; Lee, C.; MacMillan, D. W. C. Angew. Chem., Int. Ed. 2018, 57, 3488.  doi: 10.1002/anie.201800699

    20. [20]

    21. [21]

      For recent examples, see: (a) Jiao, J.-W.; Bi, H.-Y.; Zou, P.-S.; Wang, Z.-X.; Liang, C.; Mo, D.-L. Adv. Synth. Catal. 2018, 360, 3254.
      (b) Mo, X.-L.; Chen, C.-H.; Liang, C.; Mo, D.-L. Eur. J. Org. Chem. 2018, 2018, 150.
      (c) Vantourout, J. C.; Miras, H. N.; Isidro-Llobet, A.; Sproules, S.; Watson, A. J. J. Am. Chem. Soc. 2017, 139, 4769.
      (d) Shi, W.-M.; Liu, F.-P.; Wang, Z.-X.; Bi, H.-Y.; Liang, C.; Xu, L.-P.; Su, G.-F.; Mo, D.-L. Adv. Synth. Catal. 2017, 359, 2741.
      (e) Chen, C. H.; Liu, Q. Q.; Ma, X. P.; Feng, Y.; Liang, C.; Pan, C. X.; Su, G. F.; Mo, D. L. J. Org. Chem. 2017, 82, 6417.

    22. [22]

      Chan, D. M. T.; Monaco, K. L.; Wang, R.-P.; Winters, M. P. Tetrahedron Lett. 1998, 39, 2933.  doi: 10.1016/S0040-4039(98)00503-6

    23. [23]

      Lam, P. Y. S.; Vincent, G.; Clark, C. G.; Deudon, S.; Jadhav, P. K. Tetrahedron Lett. 2001, 42, 3415.  doi: 10.1016/S0040-4039(01)00510-X

    24. [24]

      Lan, J.-B.; Zhang, G.-L.; Yu, X.-Q.; You, J.-S.; Chen, L.; Yan, M.; Xie, R.-G. Synlett 2004, 1095.
       

    25. [25]

      Pan, C.; Cheng, J.; Wu, H.; Ding, J.; Liu, M. Synth. Commun. 2009, 39, 2082.  doi: 10.1080/00397910802638495

    26. [26]

      Kantam, M. L.; Neelima, B.; Reddy, C. V.; Neeraja, V. J. Mol. Catal. A:Chem. 2006, 249, 201.  doi: 10.1016/j.molcata.2006.01.012

    27. [27]

      (a) Azarifar, D.; Soleimanei, F. RSC Adv. 2014, 4, 12119.
      (b) Nasrollahzadeh, M.; Ehsani, A.; Maham, M. Synlett 2014, 25, 505.

    28. [28]

      Vantourout, J. C.; Li, L.; Bendito-Moll, E.; Chabbra, S.; Arrington, K.; Bode, B. E.; Isidro-Llobet, A.; Kowalski, J. A.; Nilson, M. G.; Wheelhouse, K. M. P.; Woodard, J. L.; Xie, S.; Leitch, D. C.; Watson, A. J. B. ACS Catal. 2018, 8, 9560.  doi: 10.1021/acscatal.8b03238

    29. [29]

      Moon, S. Y.; Nam, J.; Rathwell, K.; Kim, W. S. Org. Lett. 2014, 16, 338.  doi: 10.1021/ol403717f

    30. [30]

      Ouyang, B.; Liu, D.; Xia, K.; Zheng, Y.; Mei, H.; Qiu, G. Synlett 2018, 29, 111.  doi: 10.1055/s-0036-1590978

    31. [31]

      Ouyang, B.; Zheng, Y.; Liu, Y.; Liu, F.; Yao, J.; Peng, Y. Tetrahedron Lett. 2018, 59, 3694.  doi: 10.1016/j.tetlet.2018.09.001

    32. [32]

      (a) Louillat, M. L.; Patureau, F. W. Chem. Soc. Rev. 2014, 43, 901.
      (b) Park, Y.; Kim, Y.; Chang, S. Chem. Rev. 2017, 117, 9247.

    33. [33]

      Thu, H. Y.; Yu, W. Y.; Che, C. M. J. Am. Chem. Soc. 2006, 128, 9048.  doi: 10.1021/ja062856v

    34. [34]

      Youn, S. W.; Bihn, J. H.; Kim, B. S. Org. Lett. 2011, 13, 3738.  doi: 10.1021/ol201416u

    35. [35]

      Xiao, B.; Gong, T. J.; Xu, J.; Liu, Z. J.; Liu, L. J. Am. Chem. Soc. 2011, 133, 1466.  doi: 10.1021/ja108450m

    36. [36]

      Chen, X.; Hao, X. S.; Goodhue, C. E.; Yu, J. Q. J. Am. Chem. Soc. 2006, 128, 6790.  doi: 10.1021/ja061715q

    37. [37]

      John, A.; Nicholas, K. M. J. Org. Chem. 2011, 76, 4158.  doi: 10.1021/jo200409h

    38. [38]

      Shang, M.; Sun, S. Z.; Dai, H. X.; Yu, J. Q. J. Am. Chem. Soc. 2014, 136, 3354.  doi: 10.1021/ja412880r

    39. [39]

      Lee, W. C.; Shen, Y.; Gutierrez, D. A.; Li, J. J. Org. Lett. 2016, 18, 2660.  doi: 10.1021/acs.orglett.6b01105

    40. [40]

      Song, C.; Wang, T.; Yu, T.; Cui, D. M.; Zhang, C. Org. Biomol. Chem. 2017, 15, 7212.  doi: 10.1039/C7OB01872J

    41. [41]

      Meyer, A. U.; Berger, A. L.; König, B. Chem. Commun. 2016, 52, 10918.  doi: 10.1039/C6CC06111G

    42. [42]

      Tong, K.; Liu, X.; Zhang, Y.; Yu, S. Chem.-Eur. J. 2016, 22, 15669.  doi: 10.1002/chem.201604014

    43. [43]

      Gao, Y.; Chen, S.; Lu, W.; Gu, W.; Liu, P.; Sun, P. Org. Biomol. Chem. 2017, 15, 8102.  doi: 10.1039/C7OB02029E

    44. [44]

      Kwart, H.; Khan, A. A. J. Am. Chem. Soc. 1967, 89, 1951.  doi: 10.1021/ja00984a035

    45. [45]

      Díaz-Requejo, M. M.; Belderraín, T. S. R.; Nicasio, M. C.; Trofimenko, S.; Pérez J. P. J. Am. Chem. Soc. 2003, 125, 12078.  doi: 10.1021/ja037072l

    46. [46]

      Hamilton, C. W.; Laitar, D. S.; Sadighi, J. P. Chem. Commun. 2004, 1628.
       

    47. [47]

      He, L.; Chan, P. W.; Tsui, W. M.; Yu, W. Y.; Che, C. M. Org. Lett. 2004, 6, 2405.  doi: 10.1021/ol049232j

    48. [48]

      Fructos, M. R.; Trofimenko, S.; Diaz-Requejo, M. M.; Perez, P. J. J. Am. Chem. Soc. 2006, 128, 11784.  doi: 10.1021/ja0627850

    49. [49]

      Li, Z.; Capretto, D. A.; Rahaman, R. O.; He, C. J. Am. Chem. Soc. 2007, 129, 12058.  doi: 10.1021/ja0724137

    50. [50]

      Zhao, H.; Shang, Y.; Su, W. Org. Lett. 2013, 15, 5106.  doi: 10.1021/ol4024776

    51. [51]

      Li, H.; Deng, H. Synthesis 2017, 49, 2711.  doi: 10.1055/s-0036-1588165

    52. [52]

      Dong, Y.; Sun, S.; Yu, J.-t.; Cheng, J. Tetrahedron Lett. 2019, 60, 1349.  doi: 10.1016/j.tetlet.2019.03.069

    53. [53]

    54. [54]

      Kim, J. Y.; Park, S. H.; Ryu, J.; Cho, S. H.; Kim, S. H.; Chang, S. J. Am. Chem. Soc. 2012, 134, 9110.  doi: 10.1021/ja303527m

    55. [55]

      Park, S. H.; Kwak, J.; Shin, K.; Ryu, J.; Park, Y.; Chang, S. J. Am. Chem. Soc. 2014, 136, 2492.  doi: 10.1021/ja411072a

    56. [56]

      Shi, J.; Zhou, B.; Yang, Y.; Li, Y. Org. Biomol. Chem. 2012, 10, 8953.  doi: 10.1039/c2ob26767e

    57. [57]

      Yu, D. G.; Suri, M.; Glorius, F. J. Am. Chem. Soc. 2013, 135, 8802.  doi: 10.1021/ja4033555

    58. [58]

      Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3464.  doi: 10.1039/c2cs15323h

    59. [59]

      Wang, H.; Yu, Y.; Hong, X.; Tan, Q.; Xu, B. J. Org. Chem. 2014, 79, 3279.  doi: 10.1021/jo500412w

    60. [60]

      Jia, X.; Han, J. J. Org. Chem. 2014, 79, 4180.  doi: 10.1021/jo500372d

    61. [61]

      Zhang, C.; Zhou, Y.; Deng, Z.; Chen, X.; Peng, Y. Eur. J. Org. Chem. 2015, 2015, 1735.  doi: 10.1002/ejoc.201403477

    62. [62]

      Lee, D.; Kim, Y.; Chang, S. J. Org. Chem. 2013, 78, 11102.  doi: 10.1021/jo4019683

    63. [63]

      Figg, T. M.; Park, S.; Park, J.; Chang, S.; Musaev, D. G. Organometallics 2014, 33, 4076.  doi: 10.1021/om5005868

    64. [64]

      Gwon, D.; Lee, D.; Kim, J.; Park, S.; Chang, S. Chem.-Eur. J. 2014, 20, 12421.  doi: 10.1002/chem.201404151

    65. [65]

      Hwang, H.; Kim, J.; Jeong, J.; Chang, S. J. Am. Chem. Soc. 2014, 136, 10770.  doi: 10.1021/ja5053768

    66. [66]

      Kim, J.; Chang, S. Angew. Chem., Int. Ed. 2014, 53, 2203.  doi: 10.1002/anie.201310544

    67. [67]

      Shin, K.; Chang, S. J. Org. Chem. 2014, 79, 12197.  doi: 10.1021/jo5018475

    68. [68]

      Hou, W.; Yang, Y.; Ai, W.; Wu, Y.; Wang, X.; Zhou, B.; Li, Y. Eur. J. Org. Chem. 2015, 2015, 395.  doi: 10.1002/ejoc.201403355

    69. [69]

      Lee, D.; Chang, S. Chem.-Eur. J. 2015, 21, 5364.  doi: 10.1002/chem.201500331

    70. [70]

      Pi, C.; Cui, X.; Wu, Y. J. Org. Chem. 2015, 80, 7333.  doi: 10.1021/acs.joc.5b01377

    71. [71]

      Kim, Y.; Park, J.; Chang, S. Org. Lett. 2016, 18, 1892.  doi: 10.1021/acs.orglett.6b00662

    72. [72]

      Xu, L.; Tan, L.; Ma, D. J. Org. Chem. 2016, 81, 10476.  doi: 10.1021/acs.joc.6b01856

    73. [73]

      Song, Z.; Antonchick, A. P. Org. Biomol. Chem. 2016, 14, 4804.  doi: 10.1039/C6OB00926C

    74. [74]

      Li, Y.; Feng, Y.; Xu, L.; Wang, L.; Cui, X. Org. Lett. 2016, 18, 4924.  doi: 10.1021/acs.orglett.6b02406

    75. [75]

      Zhang, Y. F.; Wu, B.; Shi, Z. J. Chem.-Eur. J. 2016, 22, 17808.  doi: 10.1002/chem.201603805

    76. [76]

      Mu, D.; Wang, X.; Chen, G.; He, G. J. Org. Chem. 2017, 82, 4497.  doi: 10.1021/acs.joc.7b00531

    77. [77]

      Das, D.; Samanta, R. Adv. Synth. Catal. 2018, 360, 379.  doi: 10.1002/adsc.201701244

    78. [78]

      Kim, J.; Kim, J.; Chang, S. Chem.-Eur. J. 2013, 19, 7328.  doi: 10.1002/chem.201301025

    79. [79]

      (a) Bhanuchandra, M.; Yadav, M. R.; Rit, R. K.; Rao Kuram, M.; Sahoo, A. K. Chem. Commun. 2013, 49, 5225.
      (b) Zheng, Q. Z.; Liang, Y. F.; Qin, C.; Jiao, N. Chem. Commun. 2013, 49, 5654.

    80. [80]

      Thirunavukkarasu, V. S.; Raghuvanshi, K.; Ackermann, L. Org. Lett. 2013, 15, 3286.  doi: 10.1021/ol401321q

    81. [81]

      Yadav, M. R.; Rit, R. K.; Sahoo, A. K. Org. Lett. 2013, 15, 1638.  doi: 10.1021/ol400411v

    82. [82]

      Barnes, D. M.; Shekhar, S.; Dunn, T. B.; Barkalow, J. H.; Chan, V. S.; Franczyk, T. S.; Haight, A. R.; Hengeveld, J. E.; Kolaczkowski, L.; Kotecki, B. J.; Liang, G.; Marek, J. C.; McLaughlin, M. A.; Montavon, D. K.; Napier, J. J. J. Org. Chem. 2019, 84, 4873.  doi: 10.1021/acs.joc.8b02690

  • 加载中
    1. [1]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    2. [2]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    3. [3]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    4. [4]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    5. [5]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    6. [6]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    7. [7]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    8. [8]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    9. [9]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    10. [10]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    11. [11]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    12. [12]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    13. [13]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    14. [14]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    15. [15]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    16. [16]

      Qi WuChanghua WangYingying LiXintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107

    17. [17]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    18. [18]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    19. [19]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    20. [20]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

Metrics
  • PDF Downloads(16)
  • Abstract views(2145)
  • HTML views(369)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return