Citation: Lin Wei, Zhuang Cangwei, Hu Xiuxiu, Yang Fengli. Efficient Synthesis of Coumarin-Fused Pyrazolo[3, 4-b]pyridine Derivatives Catalyzed by Niobic Acid Modified with Phosphoric Acid under Microwave Irradiation[J]. Chinese Journal of Organic Chemistry, ;2020, 40(2): 408-416. doi: 10.6023/cjoc201907026 shu

Efficient Synthesis of Coumarin-Fused Pyrazolo[3, 4-b]pyridine Derivatives Catalyzed by Niobic Acid Modified with Phosphoric Acid under Microwave Irradiation

  • Corresponding author: Lin Wei, linwei@jsut.edu.cn Yang Fengli, yangfengli1984@hotmail.com
  • Received Date: 19 July 2019
    Revised Date: 25 August 2019
    Available Online: 25 February 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21502074), the Qing Lan Project of Jiangsu Province and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. SJCX19_0766)the Qing Lan Project of Jiangsu Province and the Postgraduate Research & Practice Innovation Program of Jiangsu Province SJCX19_0766the National Natural Science Foundation of China 21502074

Figures(4)

  • Coumarin and pyrazolo[3, 4-b]pyridine are structurally essential elements in biologically active natural compounds and are extremely important in medicinal chemistry by serving as key pharmacophores in drug discovery. In this article, the efficient synthesis of coumarin-fused pyrazolo[3, 4-b]pyridine via three-component domino reaction of aldehydes, coumarin derivative and 5-aminopyrazole in one step catalyzed by niobic acid modified with phosphoric acid under microwave irradiation has been achieved. The one-pot procedure, eco-friendly catalyst and solvent as well as simple operation are the key features of this method. The structures of the products were identified by IR, NMR, and HRMS spectra.
  • 加载中
    1. [1]

      El-Borai, M. A.; Rizk, H. F.; Beltagy, D. M.; El-Deeb, I. Y. Eur. J Med. Chem. 2013, 66, 415.  doi: 10.1016/j.ejmech.2013.04.043

    2. [2]

      De Mello, H.; Echevarria, A.; Bernardino, A. M.; CantoCavalheiro, M.; Leon, L. L. J. Med. Chem. 2004, 47, 5427.  doi: 10.1021/jm0401006

    3. [3]

      (a) Lin, R.; Connolly, P. J.; Lu, Y.; Chiu, G.; Li, S.; Yu, Y.; Huang, S.; Li, X.; Emanuel, S. L.; Middleton, S. A.; Gruninger, R. H.; Adams, M.; Fuentes-Pesquera A. R.; Greenberger, L. M. Bioorg. Med. Chem. Lett. 2007, 17, 4297.
      (b) Revesz, L.; Blum, E.; Padova, F. E. D.; Buhl, T.; Feifel, R.; Gram, H.; Hiestand, P.; Manning, U.; Neumann, U.; Rucklin, G. Bioorg. Med. Chem. Lett. 2006, 16, 262.

    4. [4]

      (a) Parker, W. B. Chem. Rev. 2009, 109, 2880.
      (b) Miliutina, M.; Janke, J.; Hassan, S.; Zaib, S.; Iqbal, J. Lecka, J.; Sévigny, J.; Villinger, A.; Friedrich, A.; Lochbrunner, S.; Langer, P. Org. Biomol. Chem. 2018, 16, 717.

    5. [5]

      (a) Ghosh, A.; Khan, A. T. Tetrahedron Lett. 2014, 55, 2006.
      (b) Babu, P. A.; Narasu, M. L.; Srinivas, K. ARKIVOC 2007, ii, 247.
      (c) Trujillo, J. I.; Kiefer, J. R.; Huang, W.; Thorarensen, A.; Xing, L.; Caspers, N. L.; Day, J. E.; Mathis, K. J.; Kretzmer, K. K.; Reitz, B. A.; Weinberg, R. A.; Stegeman, R. A.; Wrightstone, A.; Christine, L.; Compton, R.; Li, X. Bioorg. Med. Chem. Lett. 2009, 19, 908.
      (d) Svetlik, J.; Veizerova, L.; Mayer, T. U.; Catarinella, M. Bioorg. Med. Chem. Lett. 2010, 20, 4073.
      (e) Chioua, M.; Samadi, A.; Soriano, E.; Lozach, O.; Meijer, L.; Marco-Contelles, J. Bioorg. Med. Chem. Lett. 2009, 19, 4566.

    6. [6]

      (a) Luo, K. W.; Sun, J. G.; Chan, J. W.; Yang, L.; Wu, S. H.; Fung, K. P.; Liu, F. Y. Chemotherapy 2011, 57, 449.
      (b) Bhinder, C. K.; Kaur, A. Int. J. Pharm. Res. Bio-Sci. 2014, 3, 560.
      (c) Dandriyal, J.; Singla, R.; Kumar, M.; Jaitak, V. Eur. J. Med. Chem. 2016, 119, 141.

    7. [7]

      (a) Poole, S. K.; Poole, C. F. Analyst 1994, 119, 113.
      (b) Riveiro, M. E.; De Kimpe, N.; Moglioni, A.; Vazquez, R.; Monczor, F.; Shayo, C.; Davio, C. Curr. Med. Chem. 2010, 17, 1325.

    8. [8]

      (a) Patil, A. D.; Freyer, A. J.; Eggleston, D. S.; Haltiwanger, R. C.; Bean, M. F.; Taylor, P. B.; Caranfa, M. J.; Breen, A. L.; Bartus, H. R. J. Med. Chem. 1993, 36, 4131.
      (b) Spino, C.; Dodier, M. Bioorg. Med. Chem. Lett. 1998, 8, 3475.
      (c) Kostova, I.; Mojzis, J. Future HIV Ther. 2007, 1, 315.

    9. [9]

      (a) Shin, E.; Choi, K. M.; Yoo, H. S.; Lee, C. K.; Hwang, B. Y.; Lee, M. K. Biol. Pharm. Bull. 2010, 33, 1610.
      (b) Keri, R. S.; Sasidhar, B. S.; Nagaraja, B. M.; Santos, M. A. Eur. J. Med. Chem. 2015, 100, 257.

    10. [10]

      (a) Piller, N. Br. J. Exp. Pathol. 1975, 56, 554.
      (b) Bansal, Y.; Sethi, P.; Bansal, G. Med. Chem. Res. 2013, 22, 3049.

    11. [11]

      Whang, W. K.; Park, H. S.; Ham, I.; Oh, M.; Namkoong, H.; Kim, H. K.; Hwang, D. W.; Hur, S. Y.; Kim, T. E.; Park, Y. G. Exp. Mol. Med. 2005, 37, 436.  doi: 10.1038/emm.2005.54

    12. [12]

      Rosselli, S.; Maggio, A. M.; Faraone, N.; Spadaro, V.; Morris-Natschke, S. L.; Bastow, K. F.; Lee, K. H.; Bruno, M. Nat. Prod. Commun. 2009, 4, 1701.
       

    13. [13]

      Crichton, E. G.; Waterman, P. G. Phytochemistry 1978, 17, 1783.  doi: 10.1016/S0031-9422(00)88695-1

    14. [14]

      (a) Baek, N. I.; Ahn, E. M.; Kim, H. Y.; Park, Y. D. Arch. Pharm. Res. 2000, 23, 467.
      (b) Teng, M. C.; Lin, H.; Ko, F. N.; Wu, T. S. Huang, T. F. Naunyn-Schmiedeberg's Arch. Pharmacol. 1994, 349, 202.
      (c) Fort, D.; Rao, K.; Jolad, S.; Luo, J.; Carlson, T.; King, S. Phytomedicine 2000, 6, 465.

    15. [15]

      (a) Gallo, J. M. R.; Teixeim, S.; Sehuchardt, U. Appl. Catal. A 2006, 311, 199.
      (b) Prasetyoko, D.; Ramli, Z.; Endud, S. Mater. Chem. Phys. 2005, 93(2~3), 443.

    16. [16]

      Kurosaki, A.; Okuyama, T.; Okazaki, S. Bull. Chem. Soc. Jpn. 1987, 60, 3541.  doi: 10.1246/bcsj.60.3541

    17. [17]

    18. [18]

    19. [19]

      (a) Stout, D. M.; Meyers, A. I. Chem. Rev. 1982, 82, 223.
      (b) Knoevenagel, E.; Fries, A. Ber. Dtsch. Chem. Ges. 1898, 31, 761.
      (c) Zecher, W.; Kröhnke, F. Chem. Ber. 1961, 94, 690.
      (d) Zecher, W.; Kröhnke, F. Chem. Ber. 1961, 94, 698.
      (e) Allais, C.; Liéby-Muller, F.; Rodriguez, J.; Constantieux, T. Eur. J. Org. Chem. 2013, 4131.
      (f) Shi, Z.; Loh, T.-P. Angew. Chem., Int. Ed. 2013, 52, 8584.
      (g) Wu, Q.; Zhang, Y.; Cui, S. Org. Lett. 2014, 16, 1350.
      (h) Wan, J. P.; Jing, Y. F.; Hu, C. F.; Sheng, S. R. J. Org. Chem. 2016, 81, 6826.
      (i) Li, Y.; Wang, G. D.; Hao, G. F.; Wan, J. P. Tetrahedron Lett. 2019, 60, 219.

    20. [20]

      Bogdal, D. J. Chem. Res., Synop. 1998, 8, 468.
       

    21. [21]

      (a) Zhang, M.; Liu, P.; Liu, Y. H.; Shang, Z. R.; Hu, H. C.; Zhang, Z. H. RSC Adv. 2016, 6, 106160.
      (b) Saikh, F.; De, R.; Ghosh, S. Tetrahedron Lett. 2014, 55, 6171.
      (c) Jia, X. D.; Yu, L. L.; Huo, C. D.; Wang, Y. X.; Liu, J.; Wang, X. C. Tetrahedron Lett. 2014, 55, 264.
      (d) Ko, K. Y.; Kim, J. Y. Tetrahedron Lett. 1999, 40, 3207.
      (e) Shamim, T.; Monika, G.; Paul, S. J. Mol. Catal. A: Chem. 2009, 302, 15.

  • 加载中
    1. [1]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    2. [2]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    3. [3]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    4. [4]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    5. [5]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    6. [6]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    7. [7]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

    8. [8]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    9. [9]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    10. [10]

      Liping GUO . Synthesis and crystal structure characterization of yttrium imido complex: The reactivity of 2-substituted-1-amino-o-carborane with yttrium dialkyl complex. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1409-1415. doi: 10.11862/CJIC.20250065

    11. [11]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    12. [12]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    13. [13]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    14. [14]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    15. [15]

      Chao LiuHuan YuJiaming LiXi YuZhuangzhi YuYuxi SongFeng ZhangQinfang ZhangZhigang Zou . 具有光热效应的多级Ti3C2/Bi12O17Br2肖特基异质结简单合成及其太阳能驱动抗生素光降解的研究. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-0. doi: 10.1016/j.actphy.2025.100075

    16. [16]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    17. [17]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    18. [18]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    19. [19]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    20. [20]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

Metrics
  • PDF Downloads(8)
  • Abstract views(2458)
  • HTML views(280)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return