Citation: Du Junping, Qin Pengju, Xu Liancai, Feng Shanshan, Xu Yunxiang, Huang Jiang. Synthesis and Photovoltaic Property of Acceptor-Acceptor Conjugated Polymers Based on 4, 7-Dithiophene Benzothiadiazole and Isoindigo Units[J]. Chinese Journal of Organic Chemistry, ;2020, 40(1): 194-200. doi: 10.6023/cjoc201907001 shu

Synthesis and Photovoltaic Property of Acceptor-Acceptor Conjugated Polymers Based on 4, 7-Dithiophene Benzothiadiazole and Isoindigo Units

  • Corresponding author: Du Junping, dujunping@zzuli.edu.cn Xu Yunxiang, huangjiang@uestc.edu.c
  • Received Date: 1 July 2019
    Revised Date: 25 September 2019
    Available Online: 2 January 2019

    Fund Project: the Doctor Research Project of Zhengzhou University of Light Industry 2013BSJJ017the Open Project of Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences K2016-8Project supported by the National Natural Science Foundation of China (No. 21805248), the Natural Science Foundation of Henan Province (No. 162300410318), the Open Project of Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences (No. K2016-8) and the Doctor Research Project of Zhengzhou University of Light Industry (No. 2013BSJJ017)the Natural Science Foundation of Henan Province 162300410318the National Natural Science Foundation of China 21805248

Figures(7)

  • An acceptor-acceptor polymer HFTBT-DA865 based on dithiophene benzothiadiazole and isoindigo units has been synthesized by Stille polymerizaiton condensation reaction assisted with microwave. The thermal stability, photophysical properties, electrochemical properties and bulk heterojunction solar cells have been researched in details. This polymer is easily soluble in o-dichlorobenzene, o-xylene and so on, and has excellent solution processing properties. Its 5% thermal decompostion is 389℃ and glass transition temperature is 168℃, which show that the polymer has excellent thermal stability. By optimizing spin coating speed and temperature, the maximum photoelectric conversion efficiency of the polymer solar cell based on HFTBT-DA865 is 2.28%, the open circuit voltage is 0.83 V, the short circuit current is -5.70 mA/cm2, and the filling factor is 48.9%. Electrochemical performance and density functional theory estimates show that the lowest unoccupied molecular orbital (LUMO) values and the planarity of polymer and PC71BM may be the key factors affecting the low power conversion efficiency (PCE). The device performance can be further improved by further optimization of the monomer structure and the acceptor materials. This study about the properties of bulk heterojunction (BHJ) polymer solar cell based on acceptor-acceptor (A-A) typed conjugated polymer shows that this type polymer is a potential polymer solar cell material.
  • 加载中
    1. [1]

      Zhou, H.; Zhang, Y.; Mai, C.-K.; Collins, S. D.; Bazan, G. C.; Nguyen, T.-Q.; Heeger, A. J. Adv. Mater. (Weinheim, Ger.) 2015, 27, 1767.  doi: 10.1002/adma.201404220

    2. [2]

      He, Z.; Xiao, B.; Liu, F.; Wu, H.; Yang, Y.; Xiao, S.; Wang, C.; Russell, T. P.; Cao, Y. Nat. Photonics 2015, 9, 174.  doi: 10.1038/nphoton.2015.6

    3. [3]

      You, J.; Dou, L.; Yoshimura, K.; Kato, T.; Ohya, K.; Moriarty, T.; Emery, K.; Chen, C.-C.; Gao, J.; Li, G.; Yang, Y. Nat. Commun. 2013, 4, 1446.  doi: 10.1038/ncomms2411

    4. [4]

      He, P.; Li, Z.; Hou, Q.; Wang, Y. Chin. J. Org. Chem. 2013, 33, 288(in Chinese).
       

    5. [5]

      Li, F.; Song, X.; Zhang, K.; Shahid, B.; Wang, Q.; Yu, L.; Zhu, D.; Sun, M. Dyes Pigm. 2019, 170, 107548.  doi: 10.1016/j.dyepig.2019.107548

    6. [6]

      Liu, F.; Liu, J.; Wang, L. Org. Chem. Front. 2019, 6, 1996.  doi: 10.1039/C9QO00286C

    7. [7]

      Meng, Y.; Wu, J.; Guo, X.; Su, W.; Zhu, L.; Fang, J.; Zhang, Z.-G.; Liu, F.; Zhang, M.; Russell, T. P.; Li, Y. Sci. China, Chem. 2019, 62, 845.  doi: 10.1007/s11426-019-9466-6

    8. [8]

      Zou, Y.; Dong, Y.; Sun, C.; Wu, Y.; Yang, H.; Cui, C.; Li, Y. Chem. Mater. 2019, 31, 4222.  doi: 10.1021/acs.chemmater.9b01175

    9. [9]

      Qin, R.; Geng, F.; Wang, D.; Yao, X. Chin. J. Org. Chem. 2015, 35, 2583(in Chinese).
       

    10. [10]

      Zhang, C.; Sun, Y.; Dai, B.; Zhang, X.; Yang, H.; Lin, B.; Guo, L. Chin. J. Org. Chem. 2014, 34, 1701(in Chinese).
       

    11. [11]

      Yoon, W.-J.; Berger, P. R. Appl. Phys. Lett. 2008, 92, 013306/1.  doi: 10.1063/1.2830619

    12. [12]

      Padinger, F.; Rittberger, R. S.; Sariciftci, N. S. Adv. Funct. Mater. 2003, 13, 85.  doi: 10.1002/adfm.200390011

    13. [13]

      Salem, A. M. S.; El-Sheikh, S. M.; Harraz, F. A.; Ebrahim, S.; Soliman, M.; Hafez, H. S.; Ibrahim, I. A.; Abdel-Mottaleb, M. S. A. Appl. Surf. Sci. 2017, 425, 156.  doi: 10.1016/j.apsusc.2017.06.322

    14. [14]

      Sharma, S. S.; Sharma, K.; Sharma, G. D. Nanotechnol. Rev. 2015, 4, 419.

    15. [15]

      Van Chau, D.; Van Thuong, D. J. Appl. Sci. 2016, 16, 25.  doi: 10.3923/jas.2016.25.30

    16. [16]

      Park, K.-Y.; Lee, J.-S.; Namkung, H.-S.; Koo, M.-S.; Cho, S.-J.; Yoon, B.-W.; Kim, Y.-M.; Lee, Y.-S.; Song, S.-H.; Park, D.-K.; Kim, C.-G. J. Nanosci. Nanotechnol. 2015, 15, 1683.  doi: 10.1166/jnn.2015.9305

    17. [17]

      Rao, P. S.; Gupta, A.; Srivani, D.; Bhosale, S. V.; Bilic, A.; Li, J.; Xiang, W.; Evans, R. A.; Bhosale, S. V. Chem. Commun. 2018, 54, 5062.  doi: 10.1039/C8CC01779D

    18. [18]

      Chen, C.-H.; Lu, Y.-J.; Su, Y.-W.; Lin, Y.-C.; Lin, H.-K.; Chen, H.-C.; Wang, H.-C.; Li, J.-X.; Wu, K.-H.; Wei, K.-H. Org. Electron. 2019, 71, 185.  doi: 10.1016/j.orgel.2019.05.002

    19. [19]

      Chen, Z.; Cai, P.; Chen, J.; Liu, X.; Zhang, L.; Lan, L.; Peng, J.; Ma, Y.; Cao, Y. Adv. Mater. 2014, 26, 2586.  doi: 10.1002/adma.201305092

    20. [20]

      Cheon, Y. R.; Kim, Y. J.; Ha, J.-J.; Kim, M.-J.; Park, C. E.; Kim, Y.-H. Macromolecules 2014, 47, 8570.  doi: 10.1021/ma501888z

    21. [21]

      Hoven, C. V.; Dang, X.-D.; Coffin, R. C.; Peet, J.; Nguyen, T.-Q.; Bazan, G. C. Adv. Mater. 2010, 22, E63.

    22. [22]

      Huang, H.; Du, Z.; Huang, C.; Zhang, J.; Liu, S.; Fu, N.; Zhao, B.; Yang, R.; Huang, W. Polymer 2019, 162, 11.  doi: 10.1016/j.polymer.2018.12.015

    23. [23]

      Li, H.; Cao, J.; Zhou, Q.; Ding, L.; Wang, J. Nano Energy 2015, 15, 125.  doi: 10.1016/j.nanoen.2015.04.016

    24. [24]

      Qiu, L.; Huang, K.; Ding, Y.; Du, Y.; Zhang, Q.; Zhao, Y. CN 108192084, 2018.

    25. [25]

      Suman; Siddiqui, A.; Keshtov, M. L.; Sharma, G. D.; Singh, S. P. J. Mater. Chem. C 2019, 7, 543.  doi: 10.1039/C8TC05318A

    26. [26]

      Synooka, O.; Eberhardt, K. R.; Balko, J.; Thurn-Albrecht, T.; Gobsch, G.; Mitchell, W.; Berny, S.; Carras-co-Orozco, M.; Hoppe, H. Nanotechnology 2016, 27, 254001/1.  doi: 10.1088/0957-4484/27/25/254001

    27. [27]

      Lee, J.-K.; Gwinner, M. C.; Berger, R.; Newby, C.; Zentel, R.; Friend, R. H.; Sirringhaus, H.; Ober, C. K. J. Am. Chem. Soc. 2011, 133, 9949.  doi: 10.1021/ja201485p

    28. [28]

      Ge, C.-W.; Mei, C.-Y.; Ling, J.; Wang, J.-T.; Zhao, F.-G.; Liang, L.; Li, H.-J.; Xie, Y.-S.; Li, W.-S. J. Polym. Sci., Part A 2014, 52, 1200.  doi: 10.1002/pola.27108

    29. [29]

      Sonar, P.; Foong, T. R. B.; Singh, S. P.; Li, Y.; Dodabalapur, A. Chem. Commun. 2012, 48, 8383.  doi: 10.1039/c2cc33093h

    30. [30]

      Zhao, X.; Wen, Y.; Ren, L.; Ma, L.; Liu, Y.; Zhan, X. J. Polym. Sci., Part A 2012, 50, 4266.  doi: 10.1002/pola.26233

    31. [31]

      Kim, G.; Han, A. R.; Lee, H. R.; Lee, J.; Oh, J. H.; Yang, C. Chem. Commun. 2014, 50, 2180.  doi: 10.1039/c3cc48013e

    32. [32]

      Hou, J.; Tan, Z. A.; Yan, Y.; He, Y.; Yang, C.; Li, Y. J. Am. Chem. Soc. 2006, 128, 4911.  doi: 10.1021/ja060141m

    33. [33]

      Chaudhary, D. K.; Ghosh, A.; Thangavel, R.; Kumar, L. Thin Solid Films 2018, 649, 202.  doi: 10.1016/j.tsf.2018.01.055

    34. [34]

      Fang, S.; Su, J.; Wang, G.; Xue, L.; Zhang, Y.; Du, J. Chin. J. Org. Chem. 2015, 35, 1565(in Chinese).
       

    35. [35]

      Qin, R.; Geng, F.; Wang, D.; Yao, X. Chin. J. Org. Chem. 2015, 35, 2583(in Chinese).
       

  • 加载中
    1. [1]

      Simin Fang Hong Wu Sizhe Sheng Lingling Li Yuxi Wang Hongchun Li Jun Jiang . The Food Kingdom Lecture Series: The Science behind Color. University Chemistry, 2024, 39(9): 177-182. doi: 10.12461/PKU.DXHX202402012

    2. [2]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

    3. [3]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    4. [4]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    5. [5]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    6. [6]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    7. [7]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    8. [8]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    9. [9]

      Minghui WuMarkus MühlinghausXuechao LiChaojie XuQiang ChenHaiming ZhangKlaus MüllenLifeng Chi . On-Surface Synthesis of Chevron-Shaped Conjugated Ladder Polymers Consisting of Benzo[a]azulene Units. Acta Physico-Chimica Sinica, 2024, 40(8): 2307024-0. doi: 10.3866/PKU.WHXB202307024

    10. [10]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    11. [11]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    12. [12]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

    13. [13]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    14. [14]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    15. [15]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    16. [16]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    17. [17]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    18. [18]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    19. [19]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    20. [20]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

Metrics
  • PDF Downloads(6)
  • Abstract views(940)
  • HTML views(129)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return