Citation: Zhang Jidong, Zhang Jun, Yan Zhan, Xie Juanping. Recent Progress in Fluorescent Probes for Adenosine Triphosphate Based on Small Organic Molecules[J]. Chinese Journal of Organic Chemistry, ;2019, 39(11): 3051-3064. doi: 10.6023/cjoc201905024 shu

Recent Progress in Fluorescent Probes for Adenosine Triphosphate Based on Small Organic Molecules

  • Corresponding author: Zhang Jidong, akuzjd@aku.edu.cn
  • Received Date: 12 May 2019
    Revised Date: 27 June 2019
    Available Online: 17 November 2019

    Fund Project: Project supported by the Youth Foundation of Shaanxi Provincial Science & Technology Department (No. 2019JQ-504), the Major Scientific Research Projects of the Leading Industry of Ankang City (No. 2016AKZDCY002), the Doctor's Initial Funding of Ankang University (No. 2018AYQDZR06), the Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture (No. Se-2018B02), and the Shaanxi Provincial Innovation Experiment Program for University Students (No. 201839032)the Major Scientific Research Projects of the Leading Industry of Ankang City 2016AKZDCY002the Doctor's Initial Funding of Ankang University 2018AYQDZR06the Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture Se-2018B02the Youth Foundation of Shaanxi Provincial Science & Technology Department 2019JQ-504the Shaanxi Provincial Innovation Experiment Program for University Students 201839032

Figures(14)

  • Adenosine triphosphate (ATP) is a high-energy phosphate compound commonly existing in various living cells, which plays important roles in the biological activities such as energy storage, cell respiration and enzyme catalytic reactions. Therefore, it is very crucial to ATP research in bio-organism. Fluorescence detection techniques has the advantages of convenient operation, good selectivity and high sensitivity, etc. In recent years, the design and synthesis of efficient ATP fluorescence sensors have become a research focus in the fields of biochemistry and analytical chemistry. According to the structure characteristics, ATP fluorescence chemosensors are categorized as Zn(Ⅱ) metal ions as recognition of bonding site type, other metal ions as recognition of bonding site type and electrostatic or hydrogen bond as interaction type. Based on organic small molecule fluorescence sensors, the recent progress in research of ATP fluorescence sensors in molecular design and application is reviewed, and the prospects for their development are discussed.
  • 加载中
    1. [1]

      Knowles, J. R. Annu. Rev. Biochem. 1980, 49, 877.  doi: 10.1146/annurev.bi.49.070180.004305

    2. [2]

      Higgins, C. F.; Hiles, I. D.; Salmond, G. P. C.; Gill, D. R.; Downie, J. A.; Evans, I. J.; Holland, I. B.; Gray, L.; Buckel, S. D.; Bell, A. W.; Hermodson, M. A. Nature 1986, 323, 448.  doi: 10.1038/323448a0

    3. [3]

      Mishra, N. S.; Tuteja, R.; Tuteja, N. Arch. Biochem. Biophys. 2006, 452, 55.  doi: 10.1016/j.abb.2006.05.001

    4. [4]

      Ghosh, A.; Shrivastav, A.; Jose, D. A.; Mishra, S. K.; Chandrakanth, C. K.; Mishra, S.; Das, A. Anal. Chem. 2008, 80, 5312.  doi: 10.1021/ac8005022

    5. [5]

      Beyeh, N. K.; Diez, I.; Taimoory, S. M.; Meister, D.; Feig, A. I.; Trant, J. F.; Ras, R. H. A.; Rissanen, K. Chem. Sci. 2018, 9, 1358.  doi: 10.1039/C7SC05167K

    6. [6]

      Gao, M.; Yu, F.; Lv, C.; Choo, J.; Chen, L. Chem. Soc. Rev. 2017, 46, 2237.  doi: 10.1039/C6CS00908E

    7. [7]

      Umezawa, K.; Yoshida, M.; Kamiya, M.; Yamasoba, T.; Urano, Y. Nat. Chem. 2017, 9, 279.  doi: 10.1038/nchem.2648

    8. [8]

      You, L.; Zha, D.; Anslyn, E. V. Chem. Rev. 2015, 115, 7840.  doi: 10.1021/cr5005524

    9. [9]

      Buccella, D.; Horowitz, J. A.; Lippard, S. J. J. Am. Chem. Soc. 2011, 133, 4101.  doi: 10.1021/ja110907m

    10. [10]

      Zhou, Y.; Xu, Z.; Yoon, J. Chem. Soc. Rev. 2011, 40, 2222.  doi: 10.1039/c0cs00169d

    11. [11]

      Weitz, E. A.; Chang, J. Y.; Rosenfield, A. H.; Pierre, V. C. J. Am. Chem. Soc. 2012, 134, 16099.  doi: 10.1021/ja304373u

    12. [12]

      Lu, B.; Meng, S.; Feng, Y. Chin. J. Org. Chem. 2018, 38, 350 (in Chinese).
       

    13. [13]

      Qu, W.; Fang, H.; Huang, Q.; Zhang, Y.; Lin, Q.; Yao, H.; Wei, T. Chin. J. Org. Chem. 2019, 39, 1226 (in Chinese).
       

    14. [14]

      Li, J.; Chen, L.; Du, L.; Li, M. Chem. Soc. Rev. 2013, 42, 662.  doi: 10.1039/C2CS35249D

    15. [15]

      Fan, Y.; Wang, S.; Zhang, F. Angew. Chem. Int. Ed. 2019, 58, 13208.  doi: 10.1002/anie.201901964

    16. [16]

      Li, M.; Wang, Y.; Liu, G.; Lü, H.; Xing, G. Chin. J. Org. Chem. 2017, 37, 356 (in Chinese).
       

    17. [17]

      Kurishita, Y.; Kohira, T.; Ojida, A.; Hamachi, I. J. Am. Chem. Soc. 2010, 132, 13290.  doi: 10.1021/ja103615z

    18. [18]

      Wu, Y.; Wen, J.; Li, H.; Sun, S.; Xu, Y. Chin. Chem. Lett. 2017, 28, 1916.  doi: 10.1016/j.cclet.2017.09.032

    19. [19]

      Ojida, A.; Mito-oka, Y.; Sada, K.; Hamachi, I. J. Am. Chem. Soc. 2004, 126, 2454.  doi: 10.1021/ja038277x

    20. [20]

      Yamaguchi, S.; Yoshimura, I.; Kohira, T.; Tamaru, S.; Hamachi, I. J. Am. Chem. Soc. 2005, 127, 11835.  doi: 10.1021/ja052838y

    21. [21]

      Ojida, A.; Miyahara, Y.; Wongkongkatep, J.; Tamaru, S.; Sada, K.; Hamachi, T. Chem. Asian J. 2006, 1, 555.  doi: 10.1002/asia.200600137

    22. [22]

      Ojida, A.; Nonaka, H.; Miyahara, Y.; Tamaru, S.; Sada, K.; Hamachi, I. Angew. Chem. Int. Ed. 2006, 45, 5518.  doi: 10.1002/anie.200601315

    23. [23]

      Jose, D. A.; Mishra, S.; Ghosh, A.; Shrivastav, A.; Mishra, S. K.; Das, A. Org. Lett. 2007, 9, 1979.  doi: 10.1021/ol0705797

    24. [24]

      Mahato, P.; Ghosh, A.; Mishra, S. K.; Shrivastav, A.; Mishra, S.; Das, A. Inorg. Chem. 2011, 50, 4162.  doi: 10.1021/ic200223g

    25. [25]

      Duodu, E.; Kraskouskaya, D.; Gomez-Biagi, R. F.; Gunning, P. T. Analyst 2016, 141, 820.  doi: 10.1039/C5AN01414J

    26. [26]

      Butler, S. J. Chem. Eur. J. 2014, 20, 15768.  doi: 10.1002/chem.201404499

    27. [27]

      Minami, T.; Emami, F.; Nishiyabu, R.; Kubo, Y.; Anzenbacher, P. Jr. Chem. Commun. 2016, 52, 7838.  doi: 10.1039/C6CC02923J

    28. [28]

      Rao, A. S.; Kim, D.; Nam, H.; Jo, H.; Kim, K. H.; Ban, C.; Ahn, K. H. Chem. Commun. 2012, 48, 3206.  doi: 10.1039/c2cc17629g

    29. [29]

      Zhang, M.; Ma, W. J.; He, C.T.; Jiang, L.; Lu, T. B. Inorg. Chem. 2013, 52, 4873.  doi: 10.1021/ic302435g

    30. [30]

      Fang, W.; Liu, C.; Yu, F.; Liu, Y.; Li, Z.; Chen, L.; Bao, X.; Tu, T. ACS. Appl. Mater. Interfaces 2016, 8, 20583.  doi: 10.1021/acsami.6b05804

    31. [31]

      Moro, A. J.; Cywinski, P. J.; Korsten, S.; Mohr, G. J. Chem. Commun. 2010, 46, 1085.  doi: 10.1039/B919661G

    32. [32]

      Xu, Z.; Spring, D. R.; Yoon, J. Chem. Asian. J. 2011, 6, 2114.  doi: 10.1002/asia.201100120

    33. [33]

      Xu, Q.; Lv, H.; Lv, Z.; Liu, M.; Li, Y.; Wang, X.; Zhang, Y.; Xing, G. RSC Adv. 2014, 4, 47788.  doi: 10.1039/C4RA07923J

    34. [34]

      Strianese, M.; Milione, S.; Maranzana, A.; Grassi, A.; Pellecchia, C. Chem. Commun. 2012, 48, 11419.  doi: 10.1039/c2cc35730e

    35. [35]

      Patra, C.; Bhanja, A. K.; Mahapatra, A.; Mishra, S.; Saha, K. D.; Sinha, C. RSC Adv. 2016, 6, 76505.  doi: 10.1039/C6RA12369D

    36. [36]

      Kumari, N.; Zelder, F. Chem. Commun. 2015, 51, 17170.  doi: 10.1039/C5CC07413D

    37. [37]

      Kataev, E.; Arnold, R.; Rüffer, T.; Lang, H. Inorg. Chem. 2012, 51, 7948.  doi: 10.1021/ic300805q

    38. [38]

      Gao, Y. G.; Tang, Q.; Shi, Y. D.; Zhang, Y.; Lu, Z. L. Talanta 2016, 152, 438.  doi: 10.1016/j.talanta.2016.02.040

    39. [39]

      Xiao, L.; Sun, S.; Pei, Z.; Pei, Y.; Pang, Y.; Xu, Y. Biosens. Bioelectron. 2015, 65, 166.  doi: 10.1016/j.bios.2014.10.038

    40. [40]

      Zhang, X.; Jiang, Y.; Xiao, N. Chem. Commun. 2018, 54, 12812.  doi: 10.1039/C8CC06311G

    41. [41]

      Wu, H.; He, C.; Lin, Z.; Liu, Y.; Duan, C. Inorg. Chem. 2009, 48, 408.  doi: 10.1021/ic801350h

    42. [42]

      Liu, X.; Xu, J.; Lv, Y.; Wu, W.; Liu, W.; Tang, Y. Dalton. Trans. 2013, 42, 9840.  doi: 10.1039/c3dt50986a

    43. [43]

      Weitz, E. A.; Chang, J. Y.; Rosenfield, A. H.; Pierre, V. C. J. Am. Chem. Soc. 2012, 134, 16099.  doi: 10.1021/ja304373u

    44. [44]

      Shuvaev, S.; Fox, M. A.; Parker, D. Angew. Chem., Int. Ed. 2018, 57, 7488.  doi: 10.1002/anie.201801248

    45. [45]

      Mailhot, R.; Traviss-Pollard, T.; Pal, R.; Butler, S. J. Chem. Eur. J. 2018, 24, 10745.  doi: 10.1002/chem.201801008

    46. [46]

      Xu, Z.; Kim, S. K.; Yoon, J. Chem. Soc. Rev. 2010, 39, 1457.  doi: 10.1039/b918937h

    47. [47]

      Xu, Z.; Singh, N. J.; Lim, J.; Pan, J.; Kim, H. N.; Park, S.; Kim, K. K.; Yoon, J. J. Am. Chem. Soc. 2009, 131, 15528.  doi: 10.1021/ja906855a

    48. [48]

      Farshbaf, S.; Anzenbacher, P. Jr. Chem. Commun. 2019, 55, 1770.  doi: 10.1039/C8CC09857C

    49. [49]

      Luo, J.; Xie, Z.; Lam, J. W. Y.; Chen, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. Chem. Commun. 2001, 1740.

    50. [50]

      Kwok, R. T.; Leung, C. W.; Lam, J. W.; Tang, B. Z. Chem. Soc. Rev. 2015, 44, 4228.  doi: 10.1039/C4CS00325J

    51. [51]

      Xu, W.; Lee, M. M. S.; Zhang, Z.; Sung, H. H. Y.; Williams, I. D.; Kwok, R. T. K.; Lam, J. W. Y.; Wang, D.; Tang, B. Z. Chem. Sci. 2019, 10, 3494.  doi: 10.1039/C8SC05805A

    52. [52]

      Li, X.; Guo, X.; Cao, L.; Xun, Z.; Wang, S.; Li, S.; Li, Y.; Yang, G. Angew. Chem. Int. Ed. 2014, 53, 7809.  doi: 10.1002/anie.201403918

    53. [53]

      Yang, Y.; Wang, X.; Cui, Q.; Cao, Q.; Li, L. ACS. Appl. Mater. Interfaces. 2016, 8, 7440.  doi: 10.1021/acsami.6b00065

    54. [54]

      Cheng, L.; Zhang, H.; Dong, Y.; Zhao, Y.; Yu, Y.; Cao, L. Chem. Commun. 2019, 55, 2372.  doi: 10.1039/C9CC00599D

    55. [55]

      Jiang, G.; Zhu, W.; Chen, Q.; Shi, A.; Wu, Y.; Zhang, G.; Li, X.; Li, Y.; Fan, X.; Wang, J. Analyst 2017, 142, 4388.  doi: 10.1039/C7AN01336A

    56. [56]

      Noguchi, T.; Shiraki, T.; Dawn, A.; Tsuchiya, Y.; Lien, L. T. N.; Yamamoto, T.; Shinkai, S. Chem. Commun. 2012, 48, 8090.  doi: 10.1039/c2cc33262k

    57. [57]

      Maity, D.; Li, M.; Ehlers, M.; Schmuck, C. Chem. Commun. 2016, 53, 208.

    58. [58]

      Tan, K. Y.; Li, C. Y.; Li, Y. F.; Fei, J.; Yang, B.; Fu, Y. J.; Li, F. Anal. Chem. 2017, 89, 1749.  doi: 10.1021/acs.analchem.6b04020

    59. [59]

      Tang, J. L.; Li, C. Y.; Li, Y. F.; Zou, C. X. Chem. Commun. 2014, 50, 15411.  doi: 10.1039/C4CC08044K

    60. [60]

      Fang, Y.; Shi, W.; Hu, Y.; Li, X.; Ma, H. Chem. Commun. 2018, 54, 5454.  doi: 10.1039/C8CC02209G

    61. [61]

      Wang, L.; Yuan, L.; Zeng, X.; Peng, J.; Ni, Y.; Er, J. C.; Xu, W.; Agrawalla, B. K.; Su, D.; Kim, B.; Chang, Y. T. Angew. Chem. Int. Ed. 2016, 55, 1773.  doi: 10.1002/anie.201510003

    62. [62]

      Das, S.; Sarkar, H. S.; Uddin, M. R.; Rissanen, K.; Madal, S.; Sahoo, P. Chem. Commun. 2017, 53, 7600.  doi: 10.1039/C7CC02935G

    63. [63]

      Liu, Y.; Lee, D.; Wu, D.; Swamy, K. M. K.; Yoon, J. Sensors Actuators, B 2018, 265, 429.  doi: 10.1016/j.snb.2018.03.081

    64. [64]

      Zhang, P.; Zhu, M.; Luo, H.; Zhang, Q.; Guo, L. E.; Li, Z.; Jiang, Y. B. Anal. Chem. 2017, 89, 6210.  doi: 10.1021/acs.analchem.7b01175

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    3. [3]

      Jian LiYu ZhangRongrong YanKaiyuan SunXiaoqing LiuZishang LiangYinan JiaoHui BuXin ChenJinjin ZhaoJianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042

    4. [4]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    5. [5]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046

    6. [6]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    7. [7]

      Junmei FANWei LIURuitao ZHUChenxi QINXiaoling LEIHaotian WANGJiao WANGHongfei HAN . High sensitivity detection of baicalein by N, S co-doped carbon dots and their application in biofluids. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2009-2020. doi: 10.11862/CJIC.20240120

    8. [8]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    9. [9]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    10. [10]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    11. [11]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    12. [12]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    13. [13]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    14. [14]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    15. [15]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    16. [16]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    17. [17]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    18. [18]

      Xiaohang JINQi LIUJianping LANG . Room‑temperature solid‑state synthesis, structure, and third‑order nonlinear optical properties of phosphine‑ligand‑protected silver thiolate clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1505-1512. doi: 10.11862/CJIC.20250125

    19. [19]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    20. [20]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

Metrics
  • PDF Downloads(34)
  • Abstract views(2017)
  • HTML views(412)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return