Citation: Chen Tieqiao, Liu Long, Huang Tianzeng, Han Li-Biao. Synthesis and Reactivity of Group 10 Transition Metal Complexes with Alkenylphosphoryl Compounds[J]. Chinese Journal of Organic Chemistry, ;2019, 39(8): 2183-2187. doi: 10.6023/cjoc201905001 shu

Synthesis and Reactivity of Group 10 Transition Metal Complexes with Alkenylphosphoryl Compounds

  • Corresponding author: Han Li-Biao, libiao-han@aist.go.jp
  • Received Date: 1 May 2019
    Revised Date: 19 June 2019
    Available Online: 9 August 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21871070), and the Natural Science Foundation of Hainan Province (No. 219MS005)the Natural Science Foundation of Hainan Province 219MS005the National Natural Science Foundation of China 21871070

Figures(2)

  • Alkenylphosphoryl compounds could quickly replace two phosphine ligands in Pd(PEt3)4 at room temperature to produce the corresponding palladium complexes 3a~3e in high yields. Similar nickel and platinium complexes 3f and 3g were also synthesized by the reaction. Complex 3e could react with HOAc to release alkenylphosphoryl compounds gradually. By further addition of 2 equiv. of PEt3, the reaction could take place completely, generating a phosphoniun 4 as a precipitation. Being similar to Pd(PEt3)4, 3d could also undergo hydropalladation with the combination of phenylacetylene and (EtO)2P(O)H, forming the expected vinyl-Pd-phosphoryl complex, but with a slower reaction rate. The result indicated that alkenylphosphoryl compounds generated from the palladium-catalyzed hydrophosphorylation of alkynes with H-phosphonates might play a negative role in the hydropalladation step of the catalytic cycle. Complexes 3a~3g and phosphonium 4 were charaterized by NMR analysis. The structures of 3a and 4 were also confirmed by X-ray technology.
  • 加载中
    1. [1]

      For selected book and reviews, see: (a) Lawrance, G. A. Introduction to Coordination Chemistry, Wiley, Chichester, UK, 2010.
      (b) Burgess, J.; Steel, P. J. Coord. Chem. Rev. 2011, 255, 2094.
      (c) Steobenau, E. J.; Jordan, R. F. J. Am. Chem. Soc. 2006, 128, 8162.
      (d) Harvey, B. G.; Ernst, R. D. Eur. J. Inorg. Chem. 2017, 2017, 1205.
      (e) Defieber, C.; Grutzmacher, H.; Carreira, E. M. Angew. Chem., Int. Ed. 2008, 47, 4482.
      (f) Johnson, J. B.; Rovis, T. Angew. Chem., Int. Ed. 2008, 47, 840.
      (g) Feng, X.; Du, H. Chin. J. Org. Chem. 2015, 35, 259(in Chinese).
      (冯向青, 杜海峰, 有机化学, 2015, 35, 259.)

    2. [2]

      For selected reviews, see: (a) Dembitsky, V. M.; Quntar, A. A. A. A.; Haj-Yehia, A.; Srebnik, M. Mini-Rev. Org. Chem. 2005, 2, 91.
      (b) Minami, T.; Motoyoshiya, J. Synthesis 1992, 333.
      (c) Wang, H.-Q.; Liu, Z.-J. Chin. J. Org. Chem. 2003, 23, 321(in Chinese).
      (王宏青, 刘钊杰, 有机化学, 2003, 23, 321.)

    3. [3]

      (a) Al-Quntar, A. A.-A.; Baum, O.; Reich, R.; Srebnik, M. Arch. Pharm. 2004, 337, 76.
      (b) Liu, Z.; MacRitchie, N.; Pyne, S.; Pyne, N. J.; Bittman, R. Bioorg. Med. Chem. 2013, 21, 2503.
      (c) Harnden, M. R.; Parkin, A.; Parratt, M. J.; Perkins, R. M. J. Med. Chem. 1993, 36, 1343.
      (d) Tonelli, F.; Lim, K. G.; Loveridge, C.; Long, J.; Pitson, S. M.; Tigyi, G.; Bittman, R.; Pyne, S.; Pyne, N. J. Cell. Signalling 2010, 22, 1536.

    4. [4]

      (a) Kosolapoff, G. M. J. Am. Chem. Soc. 1948, 70, 1971.
      (b) Mulla, K.; Aleshire, K. L.; Forster, P. M.; Kang, J. Y. J. Org. Chem. 2016, 81, 77 and references cited therein.

    5. [5]

      Han, L.-B.; Tanaka, M. J. Am. Chem. Soc. 1996, 118, 1571. 

    6. [6]

      (a) Coudray, L.; Montchamp, J.-L. Eur. J. Org. Chem. 2008, 3601.
      (b) Delacroix, O.; Gaumont, A. C. Curr. Org. Chem. 2005, 9, 1851. (c) Xu, Q.; Han, L.-B. J. Organomet. Chem. 2011, 696, 130.

    7. [7]

      http://www.katayamakagaku.co.jp/products/chemicalproducts/flameretardant/index.html

    8. [8]

      Chen, T.; Zhao, C.-Q.; Han, L.-B. J. Am. Chem. Soc. 2018, 140, 3139.  doi: 10.1021/jacs.8b00550

    9. [9]

      (a) Stewart, I. C.; Bergman, R. G.; Toste, F. D. J. Am. Chem. Soc. 2003, 125, 8696.
      (b) Okuma, K.; Izaki, T. Bull. Chem. Soc. Jpn. 2005, 78, 1831.
      (c) Kentaro, O., Koichiro, Y.; Toshiharu, I.; Keiko, Y.; Kosei, S. Bull. Chem. Soc. Jpn. 2007, 80, 1785.
      (d) Arisawa, M.; Yamaguchi, M. J. Am. Chem. Soc. 2006, 128, 50.
      (e) Arisawa, M.; Yamaguchi, M. In ACS Symposium Series, Ed.: Laali, K. K., American Chemical Society, Washington, DC, 2007, Vol. 965, Chapter 22, pp. 477~492.

    10. [10]

      For a review, see: Guo, H.; Fan, Y. C.; Sun, Z.; Wu, Y.; Kwon, O. Chem. Rev. 2018, 118, 10049.

    11. [11]

      Both electronic and steric factors affect the regioselectivity of hydropalladation, for details, please see Ref. [8]. A related work on the basis of DFT calculation was also reported, see: Zhang, H.; Bao, X. RSC Adv. 2015, 5, 84636.

  • 加载中
    1. [1]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    2. [2]

      Wei SunAnjing LiaoLi LeiXu TangYa WangJian Wu . Research progress on piperidine-containing compounds as agrochemicals. Chinese Chemical Letters, 2025, 36(1): 109855-. doi: 10.1016/j.cclet.2024.109855

    3. [3]

      Xinlong HanHuiying ZengChao-Jun Li . Trifluoromethylative homo-coupling of carbonyl compounds. Chinese Chemical Letters, 2025, 36(1): 109817-. doi: 10.1016/j.cclet.2024.109817

    4. [4]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    5. [5]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    6. [6]

      Yin-Hang Chai Li-Long Dang . New structural breakthrough and topological transformation of homogeneous metalla[4]catenane compounds. Chinese Journal of Structural Chemistry, 2024, 43(10): 100322-100322. doi: 10.1016/j.cjsc.2024.100322

    7. [7]

      Shuai TangZian WangMengyi ZhuXinyun ZhaoXiaoyun HuHua Zhang . Synthesis of organoboron compounds via heterogeneous C–H and C–X borylation. Chinese Chemical Letters, 2025, 36(5): 110503-. doi: 10.1016/j.cclet.2024.110503

    8. [8]

      Dong-Sheng DengSu-Qin TangYong-Tu YuanDing-Xiong XieZhi-Yuan ZhuYue-Mei HuangYun-Lin Liu . C-F insertion reaction sheds new light on the construction of fluorinated compounds. Chinese Chemical Letters, 2024, 35(8): 109417-. doi: 10.1016/j.cclet.2023.109417

    9. [9]

      Yaping ZhangWei ZhouMingchun GaoTianqi LiuBingxin LiuChang-Hua DingBin Xu . Oxidative cyclization of allyl compounds and isocyanide: A facile entry to polysubstituted 2-cyanopyrroles. Chinese Chemical Letters, 2024, 35(4): 108836-. doi: 10.1016/j.cclet.2023.108836

    10. [10]

      Zeyu JiangYadi WangChangwei ChenChi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400

    11. [11]

      Lu HuangJiang WangHong JiangLanfang ChenHuanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896

    12. [12]

      Yuling MaDongqing LiuTao ZhangChengjie SongDongmei LiuPeizhi WangWei Wang . Bimetallic composite carbon fiber with persulfate mediation for intercepting volatile organic compounds during solar interfacial evaporation. Chinese Chemical Letters, 2025, 36(3): 110000-. doi: 10.1016/j.cclet.2024.110000

    13. [13]

      Genxiang WangLinfeng FanPeng WangJunfeng WangFen QiaoZhenhai Wen . Efficient synthesis of nano high-entropy compounds for advanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 110498-. doi: 10.1016/j.cclet.2024.110498

    14. [14]

      Hualei XuManman HanHaiqiang LiuLiang QinLulu ChenHao HuRan WuChenyu YangHua GuoJinrong LiJinxiang FuQichen HaoYijun ZhouJinchao FengXiaodong Wang . 4-Nitrocatechol as a novel matrix for low-molecular-weight compounds in situ detection and imaging in biological tissues by MALDI-MSI. Chinese Chemical Letters, 2024, 35(6): 109095-. doi: 10.1016/j.cclet.2023.109095

    15. [15]

      Xinghong CaiQiang YangYao TongLanyin LiuWutang ZhangSam ZhangMin Wang . AlO2: A novel two-dimensional material with a high negative Poisson's ratio for the adsorption of volatile organic compounds. Chinese Chemical Letters, 2025, 36(2): 109586-. doi: 10.1016/j.cclet.2024.109586

    16. [16]

      Teng WangJiachun CaoJuan LiDidi LiZhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078

    17. [17]

      Ze-Yuan MaMei XiaoCheng-Kun LiAdedamola ShoberuJian-Ping ZouS-(1,3-Dioxoisoindolin-2-yl)O,O-diethyl phosphorothioate (SDDP): A practical electrophilic reagent for the phosphorothiolation of electron-rich compounds. Chinese Chemical Letters, 2024, 35(5): 109076-. doi: 10.1016/j.cclet.2023.109076

    18. [18]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    19. [19]

      Haiming WuGaya N. AndrewRajini AnumulaZhixun Luo . Corrigendum to 'How ligand coordination and superatomic-states accommodate the structure and property of a metal cluster: Cu4 (dppy)4 Cl2 vs. Cu21 (dppy)10 with altered photoluminescence' [Chin. Chem. Lett. 35 (2024) 108340]. Chinese Chemical Letters, 2024, 35(12): 109912-. doi: 10.1016/j.cclet.2024.109912

    20. [20]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

Metrics
  • PDF Downloads(5)
  • Abstract views(932)
  • HTML views(147)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return