Citation: Wei Liang, Xiao Lu, Hu Yuanzheng, Wang Zuofei, Tao Haiyan, Wang Chunjiang. Recent Advances in Metallated Azomethine Ylides for the Synthesis of Chiral Unnatural α-Amino Acids[J]. Chinese Journal of Organic Chemistry, ;2019, 39(8): 2119-2130. doi: 10.6023/cjoc201904060 shu

Recent Advances in Metallated Azomethine Ylides for the Synthesis of Chiral Unnatural α-Amino Acids

  • Corresponding author: Wang Chunjiang, cjwang@whu.edu.cn
  • Received Date: 24 April 2019
    Revised Date: 25 May 2019
    Available Online: 3 August 2019

    Fund Project: Project supported by the National Natural Science Foundation of China 21772147Project supported by the National Natural Science Foundation of China 21525207the China Postdoctoral Science Foundation 2017M620331Project supported by the National Natural Science Foundation of China (Nos. 21525207, 21772147) and the China Postdoctoral Science Foundation (No. 2017M620331)

Figures(22)

  • The development of efficient methods for the preparation of unnatural amino acids has long been an important goal since their widely application in synthetic and medicinal chemistry. The asymmetric α-functionalization of nucleophilic metalated azomethine ylides, which could be in situ-generated from readily-available aldimine esters, has been recogonized as a powerful strategy to synthesize unnatural amino acids. Over the past 20 years, tranistion metal-catalyzed asymmetric construction of unnatural amino acids using azomethine ylides have been extensively studied. In this review, the progress on metallated azomethine ylides invovled aymmetric transformation for the synthesis of unnatural amino acids is summarized according to eletrophilic reagents.
  • 加载中
    1. [1]

      Wu, W. T. Biochemistry, People's Medical Publishing House, Beijing, 2004, pp. 39~42(in Chinese).

    2. [2]

      (a) Bellier, B.; McCort-Tranchenpain, I.; Ducos, B.; Danascimento, S.; Meudal, H.; Noble, F.; Garbay, C.; Roques, B. P. J. Med. Chem. 1997, 40, 3947.
      (b) Dery, O.; Josien, H.; Grassi, J.; Chassaing, G.; Couraud, J. Y.; Lavielle, S. Biopolymers 1996, 39, 67.
      (c) Benedetti, E.; Gavuzzo, E.; Santini, A.; Kent, D. R.; Zhu, Y.-F.; Zhu, Q.; Mahr, C.; Goodman, M. J. Pept. Sci. 1995, 1, 349.
      (d) Schiller, P. W.; Weltrowska, G.; Nguyen, T. M.-D.; Lemieux, C.; Chung, N. N.; Marsden, B. J.; Wilkes, B. C. J. Med. Chem. 1991, 34, 3125.

    3. [3]

      (a) Koert, U. Nachr. Chem. Technol. Lab. 1995, 43, 347.
      (b) Yano, S.; Nakanishi, Y.; Ikuina, Y.; Ando, K.; Yoshida, M.; Saitoh, Y.; Matsuda, Y.; Bando, C. J. Antibiot. 1997, 50, 992.
      (c) Kende, A. S.; Liu, K.; Jos Brands, K. M. J. Am. Chem. Soc. 1995, 117, 10597.

    4. [4]

      (a) Ohfune, Y.; Shinada, T. Eur. J. Org. Chem. 2005, 5127.
      (b) Vogt, H.; Brase, S. Org. Biomol. Chem. 2007, 5, 406.
      (c) Bera, K.; Namboothiri, I. N. N. Asian J. Org. Chem. 2014, 3, 1234.

    5. [5]

      (a) Adrio, J.; Carretero, J. C. Chem. Commun. 2014, 50, 12434.
      (b) O'Donnell, M. J. Acc. Chem. Res. 2004, 37, 506.
      (c) Taggi, A. E.; Hafez, A. M.; Lectka, T. Acc. Chem. Res. 2003, 36, 10.
      (d) Lygo, B.; Andrews, B. I. Acc. Chem. Res. 2004, 37, 518.
      (e) Maruoka, K.; Ooi, T.; Kano, T. Chem. Commun. 2007, 1487.
      (f) Kazmaier, U. Org. Chem. Front. 2016, 3, 1541.
      (f) Tang, S.; Zhang, X.; Sun, J.; Niu, D.; Chruma, J. J. Chem. Rev. 2018, 118, 10393.

    6. [6]

      (a) Saito, S.; Tsubogo, T.; Kobayashi, S. J. Am. Chem. Soc. 2007, 129, 5364.
      (b) Tsubogo, T.; Saito, S.; Seki, K.; Yamashita, Y.; Kobayashi, S. J. Am. Chem. Soc. 2008, 130, 13321.

    7. [7]

      (a) Li, Q.; Ding, C.-H.; Hou, X.-L.; Dai, L.-X. Org. Lett. 2010, 12, 1080.
      (b) Strohmeier, M.; Leach, K.; Zajac, M. A. Angew. Chem., Int. Ed. 2011, 50, 12335.
      (c) Hernández-Toribio, J.; Arrayás, R. G.; Carretero, J. C. Chem. Eur. J. 2011, 17, 6334.
      (d) He, F.-S.; Jin, J.-H.; Yang. Z.-T.; Yu, X.; Fessey, J. S.; Deng, W.-P. ACS Catal. 2016, 6, 652.
      (e) Konno, T.; Watanabe, S; Takahashi, T.; Tokoro, Y.; Fukuzawa, S. Org. Lett. 2013, 15, 4418.
      (f) Imae, K.; Konno, T.; Ogata, K.; Fukuzawa, S. Org. Lett. 2012, 13, 4410.

    8. [8]

      (a) Koizumi, A.; Kimura, M.; Arai, Y.; Tokoro, Y.; Fukuzawa, S. J. Org. Chem. 2015, 80, 10883;
      (b) Matsuda, Y.; Koizumi, A.; Haraguchi, R.; Fukuzawa, S. J. Org. Chem. 2016, 81, 7939;
      (c) Koizumi, A.; Matsuda, Y.; Haraguchi, R.; Fukuzawa, S. Tetrahedron: Asymmetry 2017, 28, 428;
      (d) Xue, Z.-Y.; Song, Z.-M.; Wang, C.-J. Org. Biomol. Chem. 2015, 13, 5460.

    9. [9]

      Xue, Z.-Y.; Liu, T.-L.; Lu, Z.; Huang, H.; Tao, H.-Y.; Wang, C.-J. Chem. Commun. 2010, 46, 1727.  doi: 10.1039/b919625k

    10. [10]

      Xue, Z.-Y.; Li, Q.-H.; Tao, H.-Y.; Wang, C.-J. J. Am. Chem. Soc. 2011, 133, 11757.  doi: 10.1021/ja2043563

    11. [11]

      Wang, M.; Wang, C.-J. Lin, Z. Organometallics 2012, 31, 7870.  doi: 10.1021/om300435s

    12. [12]

      Teng, H.-L.; Luo, F.-L.; Tao, H.-T.; Wang, C.-J. Org. Lett. 2011, 13, 5600.  doi: 10.1021/ol202326j

    13. [13]

      (a) Panday, S. K.; Prasad, J.; Dikshit, D. K. Tetrahedron: Asymmetry 2009, 20, 1581.
      (b) Smith, M. B. Alkaloids: Chem. Biol. Perspect. 1998, 12, 229.
      (c) Benoit, R.; Pascal, C.; Dominique, F.; Francois, S. Trends Heterocycl. Chem. 1991, 2, 155.

    14. [14]

      Teng, H.-L.; Huang, H.; C.-J. Chem. Eur. J. 2012, 18, 12614.  doi: 10.1002/chem.201201475

    15. [15]

      (a) Mori, T.; Takahashi, K.; Kashiwabara, M.; Uemura, D. Tetrahedron Lett. 1985, 26, 1073;
      (b) Omura, S.; Fujimoto, T.; Otoguro, K.; Matsuzaki, K.; Moriguchi, R.; Tanaka, H.; Sasaki, Y. J. Antibiot. 1991, 44, 113;
      (c) S. Omura, K.; Matsuzaki, T.; Fujimoto, K.; Kosuge, T.; Furuya, S.; Fujita, A. J. Antibiot. 1991, 44, 117.

    16. [16]

      Kim, H. Y.; Li, J.-Y.; Kim, S.; Oh, K. J. Am. Chem. Soc. 2011, 133, 20750.  doi: 10.1021/ja2100356

    17. [17]

      Bai, X.-F.; Li, L.; Xu, Z.; Zheng, Z.-J.; Xia, C.-G.; Xu, L.-W. Chem. Eur. J. 2016, 18, 10339.

    18. [18]

      Yuan, Y.; Yu, B.; Bai, X.-F.; Xu, Z.; Zheng, Z.-J.; Cui, Y.-M.; Cao, J.; Xu, L.-W. Org. Lett. 2017, 19, 4896.  doi: 10.1021/acs.orglett.7b02378

    19. [19]

      Bernardi, L.; Gothelf, A. S.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem. 2003, 68, 2583.  doi: 10.1021/jo026766u

    20. [20]

      Yan, X.-X.; Peng, Q.; Li, Q.; Zhang, K.; Yao, J.; Hou, X.-L.; Wu, Y.-D. J. Am. Chem.Soc. 2008, 130, 14362.  doi: 10.1021/ja804527r

    21. [21]

      (a) Arai, T.; Mishiro, A.; Matsumura, E.; Awata, A.; Shirasugi, M. Chem. Eur. J. 2012, 18, 11219.
      (b) Imae, K.; Shimizu, K.; Ogata, K.; Fukuzawa, S. J. Org. Chem. 2011, 76, 3604.
      (c) Shang, D. J.; Liu, Y. L.; Zhou, X.; Liu, X. H.; Feng, X. M. Chem. Eur. J. 2009, 15, 3678.
      (d) Liang, G.; Tong, M.-C.; Tao, H. Y.; Wang, C.-J. Adv. Synth. Catal. 2010, 352, 1851.

    22. [22]

      (a) Hernández-Toribio, J.; Arrayás, R. G.; Carretero, J. C. J. Am. Chem. Soc. 2008, 130, 16150.
      (b) Hernández-Toribio, J.; Arrayás, R. G.; Carretero, J. C. Chem. Eur. J. 2010, 16, 1153.

    23. [23]

      (a) Paradisi, M. P.; Torrini, I.; Zecchini, G. P.; Lucente, G.; Gavuzzo, E.; Mazza, F.; Pochetti, G. Tetrahedron 1995, 51, 2379.
      (b) Burgess, K.; Ho, K.-K.; Pal, B. J. Am. Chem. Soc. 1995, 117, 3808.
      (c) Giannis, A.; Kolter, T. Angew. Chem., Int. Ed. 1993, 32, 1244.
      (d) Balaram, P. Curr. Opin. Struct. Biol. 1992, 2, 845.

    24. [24]

      (a) You, S.-L.; Hou, X.-L.; Dai, L.-X.; Cao, B.-X.; Sun, J. Chem. Commun. 2000, 1933.
      (b) Kazmaier, U.; Zumpe, F. L. Angew. Chem., Int. Ed. 1999, 38, 1468.
      (c) Trost, B. M.; Ariza, X. J. Am. Chem. Soc. 1999, 121, 10727.
      (d) Kazmaier, U.; Maier, S.; Zumpe, F. L. Synlett 2000, 1523.
      (e) Genet, J. P.; Juge, S.; Achi, S.; Mallart, S.; Ruiz Montes, J.; Levif, G. Tetrahedron 1988, 44, 5263.
      (f) Baldwin, I. C.; Williams, J. M. J.; Beckett, R. P. Tetrahedron: Asymmetry 1995, 6, 1515.

    25. [25]

      (a) Cheng, G.; Deng, Y.; Gong, L.; Mi, A.; Cui, X.; Jiang, Y.; Choi, M. C. K.; Chan, A. S. C. Tetrahedron: Asymmetry 2001, 12, 1567.
      (b) Kanayama, T.; Yoshida, K.; Miyabe, H.; Takemoto, Y. Angew. Chem., Int. Ed. 2003, 42, 2054.
      (c) Kanayama, T.; Yoshida, K.; Miyabe, H.; Kimachi, T.; Takemoto, Y. J. Org. Chem. 2003, 68, 6197.

    26. [26]

      (a) Malleron, J. L.; Fiaud, J. C.; Legros, J. Y. Handbook of Palladium-Catalyzed Organic Reactions, Academic Press, San Diego, 1997.
      (b) Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395.
      (c) Trost, B. M. Acc. Chem. Res. 1996, 29, 355.
      (d) Williams, J. M. J. Synlett 1996, 705.
      (e) Tsuji, J. Palladium Reagents and Catalysts, Wiley, Chichester, 1995.

    27. [27]

      (a) Allen, A. E.; MacMillan, D. W. C. Chem. Sci. 2012, 3, 633.
      (b) Du, Z.; Shao, Z. Chem. Soc. Rev. 2013, 42, 1337.
      (c) Butt, N. A.; Zhang, W. Chem. Soc. Rev. 2015, 44, 7929.
      (d) Inamdar, S. M.; Shinde, V. S.; Patil, N. T. Org. Biomol. Chem. 2015, 13, 8116.

    28. [28]

      Huo, X.; He, R.; Fu, J.; Zhang, J.; Yang, G.; Zhang, W. J. Am. Chem. Soc. 2017, 139, 9819.  doi: 10.1021/jacs.7b05460

    29. [29]

      Wei, L.; Xu, S.-M.; Zhu, Q.; Che, C.; Wang, C.-J. Angew. Chem., Int. Ed. 2017, 56, 12312.  doi: 10.1002/anie.201707019

    30. [30]

      Dolbeare, K.; Pontoriero, G. F.; Gupta, S. K.; Mishra, R. K.; Johnson, R. L. J. Med. Chem. 2003, 46, 727.  doi: 10.1021/jm020441o

    31. [31]

      Wei, L.; Xiao, L.; Wang, C.-J. Adv. Synth. Catal. 201, 360, 4715.

    32. [32]

      (a) Huo, X.; Fu, J.; He, X.; Chen, J.; Xie, F.; Zhang, W. Chem. Commun. 2018, 54, 599.
      (b) Liu, P.; Hou, X.; Li, B.; He, R.; Zhang, J.; Wang, T.; Xie, F.; Zhang, W. Org. Lett., 2018, 20, 6564.

    33. [33]

      (a) Paradisi, M. P.; Torrini, I.; Zecchini, G. P.; Lucente, G.; Gavuzzo, E.; Mazza, F.; Pochetti, G. Tetrahedron 1995, 51, 2379.
      (b) Burgess, K.; Ho, K.-K.; Pal, B. J. Am. Chem. Soc. 1995, 117, 3808.
      (c) Giannis, A.; Kolter, T. Angew. Chem., Int. Ed. 1993, 32, 1244.
      (d) Balaram, P. Curr. Opin. Struct. Biol. 1992, 2, 845.

    34. [34]

      Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H. Comprehensive Asymmetric Catalysis, Vol. Ⅰ~Ⅲ, Suppl. Ⅰ~Ⅱ, Springer, New York, 1999.

    35. [35]

      Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Chem. Rev. 1993, 93, 1307.  doi: 10.1021/cr00020a002

    36. [36]

      (a) Luparia, M.; Oliveira, M. T.; Audisio, D.; Frébault, F.; Goddard, R.; Maulide, N. Angew. Chem., Int. Ed. 2011, 50, 12631.
      (b) McInturff, E. L.; Yamaguchi, E.; Krische, M. J. J. Am. Soc. Chem. 2012, 134, 20628.
      (c) Morgen, M.; Bretzke, S.; Li, P.; Menche, D. Org. Lett. 2010, 12, 4494.
      (d) Nojiri, A.; Kumagai, N.; Shibasaki, M. J. Am. Soc. Chem. 2009, 131, 3779.
      (e) Tian, X.; Cassani, C.; Liu, Y.; Moran, A.; Urakawa, A.; Galzerano, P.; Arceo, E.; Melchiorre, P. J. Am. Soc. Chem. 2011, 133, 17934.
      (f) Wang, B.; Wu, F.; Wang, Y.; Liu, X.; Deng, L. J. Am. Soc. Chem. 2007, 129, 768.

    37. [37]

      (a) Krautwald, S.; Sarlah, D.; Schafroth, M. A.; Carreira, E. M. Science 2013, 340, 1065.
      (b) Krautwald, S.; Sarlah, D.; Schafroth, M. A.; Carreira, E. M. J. Am. Chem. Soc. 2014, 136, 3020.
      (c) Sandmeier, T.; Krautwald, S.; Zipfel, H. F.; Carreira, E. M. Angew. Chem., Int. Ed. 2015, 54, 14363.

    38. [38]

      (a) Nӕsborg, L.; Halskov, K. S.; Tur, F.; Mønsted, S. M. N.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2015, 54, 10193.
      (b); Huo, X.; He, R.; Zhang, X.; Zhang, W. J. Am. Chem. Soc. 2016, 138, 11093.
      (c) Cruz, F. A.; Dong, V. M. J. Am. Chem. Soc. 2017, 139, 1029.
      (d) Jiang, X.; Beiger, J. J.; Hartwig, J. F. J. Am. Chem. Soc. 2017, 139, 87.
      (f) Zheng, H.; Wang, Y.; Xu, C.; Xu, X.; Lin, L.; Liu, X.; Feng, X. Nat. Commun. 2018, 9, 1968.

    39. [39]

      Wei, L.; Zhu, Q.; Xu, S.-M.; Chang, X.; Wang, C.-J. J. Am. Chem. Soc. 2018, 140, 1508.  doi: 10.1021/jacs.7b12174

    40. [40]

      Kiener, C. A.; Shu, C.; Incarvito, C.; Hartwig, J. H. J. Am. Chem. Soc. 2003, 125, 14272.  doi: 10.1021/ja038319h

    41. [41]

      (a) Raskatov, J. A.; Spiess, S.; Gnamm, C.; Brö dner, K.; Rominger, F.; Helmchen, G. Chem. Eur. J. 2010, 16, 6601.
      (b) Spiess, S.; Welter, C.; Franck, G.; Taquet, J.-P.; Helmchen, G. Angew. Chem., Int. Ed. 2008, 47, 7652.

    42. [42]

      (a) Wu, A.; Chakraborty, A.; Fettinger, J. C.; Flowers Ii, R. A.; Isaacs, L. Angew. Chem., Int. Ed. 2002, 41, 4028.
      (b) Safont-Sempere, M. M.; Fernández, G.; Würthner, F. Chem. Rev. 2011, 111, 5784.
      (c) He, Z.; Jiang, W.; Schalley, C. A. Chem. Soc. Rev. 2015, 44, 779.

    43. [43]

      (a) Morimoto, Y.; Takaishi, M.; Kinoshita, T.; Sakaguchi, K.; Shibata, K. Chem. Commun. 2002, 42.
      (b) Spangenberg, T.; Schoenfelder, A.; Breit, B.; Mann, A. Org. Lett. 2007, 9, 3881.

    44. [44]

      Huo, X.; Zhang, J.; Fu, J.; He, R.; Zhang, W. J. Am. Chem. Soc. 2018, 140, 2080.  doi: 10.1021/jacs.8b00187

    45. [45]

      (a) Nugent, T. C. Chiral Amine Synthesis: Methods, Developments and Applications, Wiley-VCH, Weinheim, 2010.
      (b) Puentes, C. O.; Kouznetsov, V. J. Heterocycl. Chem. 2002, 39, 595.
      (c) Przheval'skii, N. M.; Grandberg, I. I. Usp. Khim. 1987, 56, 814.
      (d) Kobayashi, S.; Mori, Y.; Fossey, J. S.; Salter, M. M. Chem. Rev. 2011, 111, 2626.
      (e) Yus, M.; González-Gómez, J. C.; Foubelo, F. Chem. Rev. 2011, 111, 7774.
      (f) Yus, M.; González-Gómez, J. C.; Foubelo, F. Chem. Rev. 2013, 113, 5595.

    46. [46]

      Wei, L.; Zhu, Q.; Xiao, L.; Tao, H.-Y.; Wang, C.-J. Nat. Commun. 2019, 10, 1594.  doi: 10.1038/s41467-019-09563-6

  • 加载中
    1. [1]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    2. [2]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    3. [3]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    4. [4]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    5. [5]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    6. [6]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    7. [7]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    8. [8]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    9. [9]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    10. [10]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    11. [11]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    12. [12]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    13. [13]

      Honghong Zhang Zhen Wei Derek Hao Lin Jing Yuxi Liu Hongxing Dai Weiqin Wei Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073

    14. [14]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    15. [15]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    16. [16]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    17. [17]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    18. [18]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    19. [19]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    20. [20]

      Qiuyu Xiang Chunhua Qu Guang Xu Yafei Yang Yue Xia . A Journey beyond “Alum”. University Chemistry, 2024, 39(11): 189-195. doi: 10.12461/PKU.DXHX202404094

Metrics
  • PDF Downloads(43)
  • Abstract views(1863)
  • HTML views(414)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return