Citation: Wang Peng, Xiao Jie, Leng Xuebing, Deng Liang. A High-Spin Iron(II) Complex Supported by a Tridentate Diamido-stibine Ligand: Synthesis, Structure and Its Reactions with Organic Azides and Diazo Compounds[J]. Chinese Journal of Organic Chemistry, ;2019, 39(8): 2243-2250. doi: 10.6023/cjoc201904040 shu

A High-Spin Iron(II) Complex Supported by a Tridentate Diamido-stibine Ligand: Synthesis, Structure and Its Reactions with Organic Azides and Diazo Compounds

  • Corresponding author: Deng Liang, deng@sioc.ac.cn
  • Received Date: 16 April 2019
    Revised Date: 13 May 2019
    Available Online: 21 August 2019

    Fund Project: the Strategic Priority Research Program of Chinese Academy of Sciences XDB20000000the National Key Research and Development Program of the Ministry of Science and Technology 2016YFA0202900the National Natural Science Foundation of China 21690062the National Natural Science Foundation of China 21725104Project supported by the National Key Research and Development Program of the Ministry of Science and Technology (No. 2016YFA0202900), the National Natural Science Foundation of China (Nos. 21725104, 21690062, 21432001, 21821002), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB20000000), and the Program of Shanghai Academic Research Leader (No. 19XD1424800)the Program of Shanghai Academic Research Leader 19XD1424800the National Natural Science Foundation of China 21432001the National Natural Science Foundation of China 21821002

Figures(10)

  • Treatment of PhSbCl2 with 2 equiv. of (2, 6-Cl2C6H3)(2-LiC6H4)NLi, which was generated in situ by the interaction of (2, 6-Cl2C6H3)(2-BrC6H4)NH with 2 equiv. of BunLi, followed by quenching with water, afforded the diamine-stibine compound ((o-(N-(2, 6-Cl2C6H3)NH)C6H4)2SbPh (denoted as H2(dcpN2Sb)). H2(dcpN2Sb) undergoes amine-elimination reaction with[Fe(N(SiMe3)2)2]2 (0.5 euiqv.) to afford an iron(Ⅱ) complex[(κ3-N, N, Sb-dcpN2Sb)Fe(THF)] (1) bearing an unique tridentate bisamido-stibine ligand. Solution magnetic susceptibility measurements (μeff=4.7(2) μB in C6D6) reveal a high spin (S=2) electronic structure for 1. Complex 1 represents the first high-spin iron(Ⅱ) complex with organic stibine ligation, and features a long Fe-Sb bond distance of 0.2792(1) nm. Density functional theory (DFT) calculations indicate weak σ interaction betwen the high-spin iron(Ⅱ) center and the antimony atom due to ineffective orbital overlap. Complex 1 can react with organic azides RN3 to furnish the high-spin (S=2) iron(Ⅱ) complexes that bear tridentate bisamido-stibonium imine ligands[(κ3-N, N, N-dcpN2SbNR)Fe(py)] (R=dcp (2, 6-Cl2C6H3), 2; R=Dipp (2, 6-iPr2C6H3), 3). These compexes are among the rare metal complexes with stibonium imine ligation. The average Sb-N distance of 0.194 nm in the imine moieties is found comparable to those of the Sb-N bonds in the reported stibonium imine compounds Mes3SbNCOCl3 (0.199 nm) and 2-MeC6H4)3SbNSO2CF3 (0.196 nm). The reactions of 1 with diazo compounds (R1R2)CN2 afford the high-spin iron(Ⅱ) complexes featuring tridentate bisamido-stibonium ylide ligands[(κ3-N, N, C-dcpN2SbCR1, R2)Fe(PMe3)] (R1=H, R2=CO2But, 4; R1=Ph, R2=CO2Et, 5). The average Sb-C distance of 0.206 nm in the ylide moieties is found comparable to those of the Sb-C bonds in the reported stibonium ylide compounds (around 0.20 nm). H2(dcpN2Sb) and 1~5 have been characterized by elemental analysis, 1H NMR, solution magnetic susceptibility measurements and single-crystal X-ray diffraction studies.
  • 加载中
    1. [1]

      Levason, W.; Mcauliffe, C. A. Acc. Chem. Res. 1978, 11, 363.  doi: 10.1021/ar50129a007

    2. [2]

      Champness, N. R.; Levason, W. Coord. Chem. Rev. 1994, 133, 115.  doi: 10.1016/0010-8545(94)80058-8

    3. [3]

      Levason, W.; Reid, G. Coord. Chem. Rev. 2006, 250, 2565.  doi: 10.1016/j.ccr.2006.03.024

    4. [4]

      Jones, J. S.; Gabbai, F. P. Acc. Chem. Res. 2016, 49, 857.  doi: 10.1021/acs.accounts.5b00543

    5. [5]

      Breunig, H. J.; Borrmann, T.; Lork, E.; Moldovan, O.; Raţ, C. I.; Wagner, R. P. J. Organomet. Chem. 2009, 694, 427.  doi: 10.1016/j.jorganchem.2008.11.022

    6. [6]

      Genge, A. R. J.; Holmes, N. J.; Levason, W.; Webster, M. Polyhedron 1999, 18, 2673.  doi: 10.1016/S0277-5387(99)00168-0

    7. [7]

      Bryan, R. F.; Schmidt, W. C. J. Chem. Soc., Dalton Trans. 1974, 2337.

    8. [8]

      Benjamin, S. L.; Karagiannidis, L.; Levason, W.; Reid, G.; Rogers, M. C. Organometallics 2011, 30, 895.  doi: 10.1021/om1010148

    9. [9]

      Godfrey, S. M.; McAuliffe, C. A.; Pritchard, R. G. J. Chem. Soc., Chem. Commun. 1994, 45.

    10. [10]

      Jones, J. S.; Wade, C. R.; Gabbai, F. P. Angew. Chem., Int. Ed. 2014, 53, 8876.  doi: 10.1002/anie.201404156

    11. [11]

      Mo, Z.; Deng, L. Coord. Chem. Rev. 2017, 350, 285.  doi: 10.1016/j.ccr.2017.07.007

    12. [12]

      Poli, R. Chem. Rev. 1996, 96, 2135.  doi: 10.1021/cr9500343

    13. [13]

      Power, P. P. Chem. Rev. 2012, 112, 3482.  doi: 10.1021/cr2004647

    14. [14]

      Xiao, J.; Deng, L. Dalton Trans. 2013, 42, 5607.  doi: 10.1039/c3dt50518a

    15. [15]

      Zhao, M.; Mao, G.; Liu, Y.; Xiao, J.; Deng, L. Chin. J. Org. Chem. 2018, 38, 1656.  doi: 10.6023/cjoc201803015

    16. [16]

      Bojan, V. R.; Fernandez, E. J.; Laguna, A.; Lopez-de-Luzuriaga, J. M.; Monge, M.; Olmos, M. E.; Puelles, R. C.; Silvestru, C. Inorg. Chem. 2010, 49, 5530.  doi: 10.1021/ic1003484

    17. [17]

      Slater, J. C. J. Chem. Phys. 1964, 41, 3199.  doi: 10.1063/1.1725697

    18. [18]

      Alvarez, S. Dalton Trans. 2013, 42, 8617.  doi: 10.1039/c3dt50599e

    19. [19]

      Liu, J.; Hu, L.; Wang, L.; Chen, H.; Deng, L. J. Am. Chem. Soc. 2017, 139, 3876.  doi: 10.1021/jacs.7b00484

    20. [20]

      You, D.; Yang, H. F.; Sen, S.; Gabba , F. P. J. Am. Chem. Soc. 2018, 140, 9644.  doi: 10.1021/jacs.8b05520

    21. [21]

      Wade, C. R.; Gabbai, F. P. Angew. Chem., Int. Ed. 2011, 50, 7369.  doi: 10.1002/anie.201103109

    22. [22]

      Matano, Y.; Nomura, H.; Suzuki, H.; Shiro, M.; Nakano, H. J. Am. Chem. Soc. 2001, 123, 10954.  doi: 10.1021/ja003623l

    23. [23]

      Matano, Y.; Nomura, H.; Suzuki, H. Inorg. Chem. 2000, 39, 1340.  doi: 10.1021/ic991120e

    24. [24]

      Edwards, A. J.; Paver, M. A.; Raithby, P. R.; Russell, C. A.; Wright, D. S. J. Chem. Soc., Dalton Trans. 1993, 2257.

    25. [25]

      Edwards, A. J.; Paver, M. A.; Rennie, M.-A.; Raithby, P. R.; Russell, C. A.; Wright, D. S. J. Chem. Soc., Dalton Trans. 1994, 2963.

    26. [26]

      Burford, N.; Macdonald, C. L. B.; Robertson, K. N.; Cameron, T. S. Inorg. Chem. 1996, 35, 4013.  doi: 10.1021/ic951532x

    27. [27]

      Burford, N.; Cameron, T. S.; Lam, K. C.; LeBlanc, D. J.; Macdonald, C. L. B.; Phillips, A. D.; Rheingold, A. L.; Stark, L.; Walsh, D. Can. J. Chem. 2001, 79, 342.  doi: 10.1139/v01-057

    28. [28]

      Glidewell, C.; Lloyd, D.; Metcalfe, S. Tetrahedron 1986, 42, 3887.  doi: 10.1016/S0040-4020(01)87542-6

    29. [29]

      Ferguson, G.; Glidewell, C.; Gosney, I.; Lloyd, D.; Metcalfe, S.; Lumbroso, H. J. Chem. Soc., Perkin Trans. 2 1988, 1829.

    30. [30]

      Koketsu, J.; Ninomiya, Y.; Suzuki, Y.; Koga, N. Inorg. Chem. 1997, 36, 694.  doi: 10.1021/ic951220u

    31. [31]

      Sudhakar, P. V.; Lammertsma, K. J. Am. Chem. Soc. 1991, 113, 1899.  doi: 10.1021/ja00006a005

    32. [32]

      Evans, D. F. J. Chem. Soc. 1959, 2003.

    33. [33]

      Sur, S. K. J. Magn. Reson. 1989, 82, 169.

    34. [34]

      Chalmers, B. A.; Buhl, M.; Arachchige, K. S. A.; Slawin, A. M. Z.; Kilian, P. Chem. Eur. J. 2015, 21, 7520.  doi: 10.1002/chem.201500281

    35. [35]

      Olmstead, M. M.; Power, P. P.; Shoner, S. C. Inorg. Chem. 1991, 30, 2547.  doi: 10.1021/ic00011a017

    36. [36]

      Neese, F. ORCA-an ab initio, Density Functional and Semi-empirical Program Package (v.3.0.3), Max-Planck Institute for Bioinorganic Chemistry, Mülheim an der Ruhr, Germany, 2015.

    37. [37]

      Becke, A. D. J. Chem. Phys. 1993, 98, 5648.  doi: 10.1063/1.464913

    38. [38]

      Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B:Condens. Matter Mater. Phys. 1988, 37, 785.  doi: 10.1103/PhysRevB.37.785

    39. [39]

      Schafer, A.; Huber, C.; Ahlrichs, R. J. Chem. Phys. 1994, 100, 5829.  doi: 10.1063/1.467146

    40. [40]

      Schafer, A.; Horn, H.; Ahlrichs, R. J. Chem. Phys. 1992, 97, 2571.  doi: 10.1063/1.463096

  • 加载中
    1. [1]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    2. [2]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    3. [3]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    4. [4]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    5. [5]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    6. [6]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    7. [7]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    8. [8]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    9. [9]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    10. [10]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    11. [11]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    12. [12]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    13. [13]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    14. [14]

      Yang Lei Jieqiong Cai Daming Sun Caihong Tao . Exploration and Practice of Integrating Moral Education with Engineering Talent Development in the Instruction of “Principles of Chemical Engineering”. University Chemistry, 2025, 40(3): 230-236. doi: 10.12461/PKU.DXHX202406071

    15. [15]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    16. [16]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    17. [17]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    18. [18]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    19. [19]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    20. [20]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

Metrics
  • PDF Downloads(4)
  • Abstract views(1130)
  • HTML views(222)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return