Citation: Wang Yaqi, Yin Qiang, Guo Dun, Han Limin, Sun Qi, Hong Hailong, Suo Quanling. Carbonyl Cobalt-Catalyzed Cyclotrimerization of Terminal Alkynes in Supercritical Carbon Dioxide[J]. Chinese Journal of Organic Chemistry, ;2019, 39(10): 2898-2905. doi: 10.6023/cjoc201904021 shu

Carbonyl Cobalt-Catalyzed Cyclotrimerization of Terminal Alkynes in Supercritical Carbon Dioxide

  • Corresponding author: Suo Quanling, szj@imut.edu.cn
  • Received Date: 9 April 2019
    Revised Date: 14 May 2019
    Available Online: 28 October 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21266019) and the Natural Science Foundation of Inner Mongolia Autonomous Region of China (No. 2015MS0204)the Natural Science Foundation of Inner Mongolia Autonomous Region of China 2015MS0204the National Natural Science Foundation of China 21266019

Figures(1)

  • Atom-efficient [2+2+2] cycloaddition reaction of alkynes in green solvent supercritical carbon dioxide (ScCO2) is an environmentally friendly reaction process that conforms to the principles of green chemistry. Cyclotrimerization of terminal alkynes catalyzed by Co2(CO)8 in pure ScCO2 has been studied to obtain 1, 2, 4-trisubstituted benzene derivatives with excellent selectivity. The reaction conditions for the cyclotrimerization were optimized, such as concentration of catalyst, CO2 pressure, reaction temperature and time. The solubility and phase behavior of the reaction materials and catalysts in ScCO2 medium were discussed, and the mechanism of Co2(CO)8 catalyzed cyclotrimerization of terminal alkynes was assumed. The reaction substrate was extended from C≡C (alkyne) to C≡N (nitrile), and the alkyne-nitrile cycloaddition reaction in ScCO2 was preliminary explored. Our optimized catalytic system for the cyclotrimerization of terminal alkynes exhibited wide substrate scope and high product selectivity, in which no organic co-solvent or additives were added. It provided a green synthetic method for 1, 2, 4-trisubstituted benzenes.
  • 加载中
    1. [1]

      Mykhailiuk, P. K. Org. Biomol. Chem. 2019, 17, 2839.  doi: 10.1039/C8OB02812E

    2. [2]

      Chopade, P. R.; Louie, J. Adv. Synth. Catal. 2006, 348, 2307.  doi: 10.1002/adsc.200600325

    3. [3]

      (a) Agenet, N.; Buisine, O.; Slowinski, F.; Gandon, V.; Aubert, C.; Malacria, M. Cotrimerizations of Acetylenic Compounds, John Wiley & Sons, Inc., New Jersey, 2007, pp. 1~302.
      (b) Kotha, S.; Lahiri, K.; Sreevani, G. Synlett 2018, 29, 2342.

    4. [4]

      Zhang, N.; Wang, Q.; Shi, W. Z. Introduction to Modern Chemical Industry, China Petrochemical Press Co. Ltd, Beijing, 2013, p. 284(in Chinese).

    5. [5]

      Xue, H.; Martyn, P. Chem. Soc. Rev. 2012, 41, 1428.  doi: 10.1039/c2cs15314a

    6. [6]

      Skouta, R. Green Chem. Lett. Rev. 2009, 2, 121.  doi: 10.1080/17518250903230001

    7. [7]

    8. [8]

      (a) Chatterjee, M.; Ishizaka, T.; Kawanami, H. Selective Hydrogenation in Supercritical Carbon Dioxide Using Metal Supported Heterogeneous Catalyst, American Chemical Society, Washington, DC, 2015, pp. 191~250.
      (b) Ichikawa, S.; Seki, T.; Ikariya, T. Adv. Synth. Catal. 2014, 356, 2643.

    9. [9]

      (a) Wang, X.; Kawanami, H. Appl. Catal., A 2008, 349, 86.
      (b) Bourne, R. A.; Xue, H.; Martyn, P.; George, M. W. Angew. Chem., Int. Ed. 2010, 48, 5322.

    10. [10]

    11. [11]

      (a) Li, F. W.; Suo, Q. L.; Hong, H. L.; Zhu, N.; Wang, Y. Q.; Guo, L. L.; Han, L. M. J. Supercrit. Fluids 2014, 92, 70.
      (b) Wang, Y. L.; Suo, Q. L.; Han, L. M.; Guo, L. L.; Wang, Y.; Li, F. W. Tetrahedron 2018, 74, 1918.

    12. [12]

    13. [13]

      (a) Casimiro, T.; Montilla, F.; Garcia, S.; Avilés, T.; Raeissi, S.; Shariati, A.; Peters, C. J.; Ponte, M. N. D.; Aguiar-Ricardo, A. J. Supercrit. Fluids 2004, 31, 1.
      (b) Kazemi, S.; Belandria, V.; Janssen, N.; Richon, D.; Peters, C. J.; Kroon, M. C. J. Supercrit. Fluids 2012, 72, 320.
      (c) Long, J. J.; Cui, C. L.; Zhang, Y. Q.; Yuan, G. H. Dyes Pigm. 2015, 115, 88.

    14. [14]

      Kaganovich, V. S.; Rybinskaya, M. I. J. Organomet. Chem. 1988, 344, 383.  doi: 10.1016/0022-328X(88)80192-X

    15. [15]

      Baxter, R. J.; Knox, G. R.; Moir, J. H.; Pauson, P. L.; Spicer, M. D. Organometallics 1999, 18, 206.  doi: 10.1021/om980545q

    16. [16]

      Wang, Y. Q.; Han, L. M.; Suo, Q. L.; Zhu, N.; Hao, J. M.; Xie, R. J. Polyhedron 2013, 54, 221.  doi: 10.1016/j.poly.2013.02.043

    17. [17]

      (a) Giuliana Gervasio, E. S. J. Organomet. Chem. 1993, 44, 203.
      (b) Cetini, G.; Gambino, O.; Rossetti, R.; Sappa, E. J. Organomet. Chem. 1967, 8, 149.
      (c) Wakatsuki, Y.; Nomura, O.; Kitaura, K.; Morokuma, K.; Yamazaki, H. J. Am. Chem. Soc. 1983, 105, 1907.
      (d) Peng, W.; Yi, Z.; Fan, Q. C.; Hao, F.; Xie, Y. M.; King, R. B.; Schaefer, I. H. F. Organometallics 2014, 33, 2352.
      (e) Chen, Z.; Liu, J.; Evans, A. J.; Alberch, L.; Wei, A. Chem. Mater. 2012, 26, 941.

    18. [18]

      Stockis, A.; Hoffmann, R. J. Am. Chem. Soc. 1980, 102, 2952.  doi: 10.1021/ja00529a015

    19. [19]

      Pittman, C. U.; Smith, L. R. J. Organomet. Chem. 1975, 90, 203.  doi: 10.1016/S0022-328X(00)92113-2

    20. [20]

      Sugahara, T.; Guo, J. D.; Sasamori, T.; Nagase, S.; Tokitoh, N. Angew. Chem., Int. Ed. 2018, 57, 3499.  doi: 10.1002/anie.201801222

    21. [21]

      Xu, L. M.; Yu, R. C.; Wang, Y. F.; Chen, J. H.; Yang, Z. J. Org. Chem. 2014, 44, 5744.

    22. [22]

      Riache, N.; Dery, A.; Callens, E.; Poater, A.; Basset, J. M. Organometallics 2015, 34, 690.  doi: 10.1021/om500684e

  • 加载中
    1. [1]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    2. [2]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    3. [3]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    4. [4]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    5. [5]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    6. [6]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    7. [7]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    8. [8]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    9. [9]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    10. [10]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

    11. [11]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    12. [12]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    13. [13]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    14. [14]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    15. [15]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    16. [16]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    17. [17]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    18. [18]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    19. [19]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    20. [20]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

Metrics
  • PDF Downloads(8)
  • Abstract views(1793)
  • HTML views(243)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return