Citation: Liu Yingjie, Lin Liqing, Han Yinghui, Zhang Xin. Recent Advances of the Synthesis of Indolines by Unactivated Alkenes[J]. Chinese Journal of Organic Chemistry, ;2019, 39(10): 2705-2712. doi: 10.6023/cjoc201904014 shu

Recent Advances of the Synthesis of Indolines by Unactivated Alkenes

  • Corresponding author: Liu Yingjie, liuyj691@nenu.edu.cn
  • Received Date: 6 April 2019
    Revised Date: 27 May 2019
    Available Online: 12 October 2019

    Fund Project: Project supported by the Program of Young Innovators of Education Department of Heilongjiang Province (No. UNPYSCT-2016181)the Program of Young Innovators of Education Department of Heilongjiang Province UNPYSCT-2016181

Figures(18)

  • Indolines, an important class of heterocycles with a wide range of biological properties, are a key structural motif in numerous natural products and biologically active compounds. As a result, efficient methods for indolines synthesis have been the subject of extensive studies. In this review, recent studies on the synthesis of various functionalized indolines using unactivated alkenes are described. It involves radical addition/cyclization reaction in the presence of oxidizing agent, which is usually carried out under neutral reaction conditions using readily available oxidizing agents and different transition metals or under metal-free as catalysts.
  • 加载中
    1. [1]

      Silva, T. S.; Rodrigues, M. T.; Santos, H.; Zeoly, L. A.; Almeida, W. P.; Barcelos, R. C.; Gomes, R. C.; Fernandes, F. S.; Coelho, F. Tetrahedron 2019, 75, 2553.  doi: 10.1016/j.tet.2019.03.032

    2. [2]

      Collins, M. A.; Hudak, V.; Bender, R.; Fensome, A.; Zhang, P.; Miller, L. Med. Chem. Lett. 2004, 14, 2185.  doi: 10.1016/j.bmcl.2004.02.054

    3. [3]

      Tokunaga, T.; Hume, W. E.; Umezone, T.; Okazaki, K.; Ueki, Y.; Kumagai, K. J. Med. Chem. 2001, 44, 4641.  doi: 10.1021/jm0103763

    4. [4]

      (a) Wang, T.; Xu, Q.; Yu, P. Org. Lett. 2001, 3, 345.
      (b) Bui, T.; Syed, S.; Barbas, C F. J. Am. Chem. Soc. 2009, 131, 8758.
      (c) Toda, N.; Ori, M.; Takami, K.; Tago, K.; Kogen, H. Org. Lett. 2003, 5, 269.
      (d) Zhang, H.; Boonsombat, J.; Padwa, A. Org. Lett. 2007, 9, 279.
      (e) Langlois, N.; Gueritte, F.; Langlois, Y. J. Am. Chem. Soc. 1976, 98, 7017.
      (f) Marino, J. P.; Rubio, M. B.; Cao, G. J. Am. Chem. Soc. 2002, 124, 13398.

    5. [5]

      (a) Van Order, R. B.; Lindwall, H. G. Chem. Rev. 1942, 30, 69.
      (b) Taber, D. F.; Tirunahari, P. K. Tetrahedron 2011, 67, 7195.
      (c) Petrini, M. Chem. Eur. J. 2017, 23, 16115.
      (d) Leitch, J. A.; Bhonoah, Y.; Frost, C. G. ACS Catal. 2017, 7, 5618.

    6. [6]

      (a) Kirillova, M. S.; Miloserdov, F. M.; Echavarren, A. M. Org. Chem. Front. 2018, 5, 273.
      (b) Song, J.; Chen, D.; Gong, L. Natl. Sci. Rev. 2017, 4, 381.
      (c) Corsello, M. A.; Kim, J.; Garg, N. Chem. Sci. 2017, 8, 5836.
      (d) Homer, J. A.; Sperry, J. J. Nat. Prod. 2017, 80, 2178.

    7. [7]

      (a) Singh, A. K.; Raj, V.; Saha, S. Eur. J. Med. Chem. 2017, 142, 244.
      (b) Sravanthi, T. V.; Manju, S. L. Eur. J. Pharm. Sci. 2016, 91, 1.
      (c) Sugimoto, S.; Naganuma, M.; Kanai, T. J. Gastroenterol. 2016, 51, 853.
      (d) Megna, B. W.; Carney, P. R.; Nukaya, M.; Geiger, P.; Kennedy, G. D. J. Surg. Res. 2016, 204, 47.

    8. [8]

      (a) Zheng, C.; Zheng, S. Y. Chem 2016, 1, 830.
      (b) Liang, X.; Zheng, C.; You, S. Chem.-Eur. J. 2016, 22, 11918.
      (c) Roche, S. P.; Tendoung, J. Y.; Treguier, B. Tetrahedron 2015, 71, 3549.
      (d) Ding, Q.; Zhou, X.; Fan, R. Org. Biomol. Chem. 2014, 12, 4807.

    9. [9]

      (a) Wang, L.; Li, S.; Blmel, M.; Puttreddy, R.; Peuronen, A.; Rissanen, K.; Enders, D. Angew. Chem., Int. Ed. 2017, 56, 8516.
      (b) Zhao, B.; Du, D.; Chem. Commun. 2016, 52, 6162.
      (c) Kayal, S.; Mukherjee, S.Org. Biomol. Chem. 2016, 14, 10175.
      (d) Du, D.; Jiang, Y.; Xu, Q.; Tang, X.; Shi, M. ChemCatChem 2015, 7, 1366.

    10. [10]

      For selected reviews on difunctionalization of alkenes, see:
      (a) Kolb, H. C.; Van Nieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483.
      (b) Beccalli, E. M.; Broggini, G.; Martinelli, M.; Sottocornola, S. Chem. Rev. 2007, 107, 5318.
      (c) Jacques, B.; Muniz, K. In Catalyzed Carbon-Heteroatom Bond Formation, Ed.: Yudin, A. K., Wiley-VCH, Weinheim, 2010, 119.
      (d) McDonald, R. I.; Liu, G.; Stahl, S. S. Chem. Rev. 2011, 111, 2981.
      (e) Chen, J.-R.; Yu, X.-Y.; Xiao, W.-J. Synthesis 2015, 47, 604.
      (f) Sun, K.; Luan, B.; Liu, Z.; Zhu, J.; Du, J.; Bai, E.; Fang, Y.; Zhang, B. Org. Bimol. Chem.2019, 17, 4208.
      (g) Sun, K.; Wang, S.; Feng, R.; Zhang, Y.; Wang, X.; Zhang, Z.; Zhang, B. Org. Lett. 2019, 21, 2052.
      (h) Sun, K.; Shi, Z.; Liu, Z.; Luan, B.; Zhu, J.; Xue, Y. Org. Lett. 2018, 20, 6687.

    11. [11]

      (a) Lan, X.; Wang, N.; Xing, Y. Eur. J. Org. Chem. 2017, 5821.
      (b) Bag, R.; De, P. B.; Pradhan, S.; Punniyamurthy, T. Eur. J. Org. Chem. 2017, 5424.
      (c) Romero, R. M.; Wçste, T. H.; MuÇiz, K. Chem. Asian J. 2014, 9, 972.
      (d) Chemler, S. R.; Bovino, M. T. ACS Catal. 2013, 3, 1076.

    12. [12]

      (a) Smart, B. E. Chem. Rev. 1996, 96, 1555.
      (b) Shimizu, M.; Hiyama, T. Angew. Chem., Int. Ed. 2005, 44, 214.
      (c) Muller, C. K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
      (d) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
      (e) Wang, F.; Wang, D.-H.; Mu, X.; Chen, P.-H.; Liu, G.-S. J. Am. Chem. Soc. 2014, 136, 10202.

    13. [13]

      For recent reviews on trifluoromethylation of alkenes, see:
      (a) Merino, E.; Nevado, C. Chem. Soc. Rev. 2014, 43, 6598.
      (b) Egami, H.; Sodeoka, M. Angew. Chem. Int. Ed. 2014, 53, 8294.

    14. [14]

      For selected examples, see:
      (a) Li, L.; Gu, Q.; Wang, N.; Song, P.; Li, Z.; Li, X.; Wang, F.; Liu, X. Chem. Commun. 2017, 53, 4038.
      (b) Koike, T.; Akita, M. Acc. Chem. Res. 2016, 49, 1937.
      (c) Ye, J.; Song, L.; Zhou, W.; Ju, T.; Yin, Z.; Yan, S.; Zhang, Z.; Li, J.; Yu, D. Angew. Chem., Int. Ed. 2016, 55, 10022.
      (d) Liu, C.; Lu, Q.; Huang, Z.; Zhang, J.; Liao, F.; Peng, P.; Lei, A. Org. Lett. 2015, 17, 6034.
      (e) Yang, B.; Xu, X.; Qing, F. Org. Lett. 2015, 17, 1906.

    15. [15]

      Recent examples for trifluoromethylative alkene difunctionalization of N-arylacrylamides:
      (a) Kawamura, S.; Sodeoka, M. Angew. Chem., Int. Ed. 2016, 55, 8740.
      (b) Guo, J.; Wu, R.; Jin, J.; Tian, S. Org. Lett. 2016, 18, 3850.
      (c) Liu, C.; Zhao, W.; Huang, Y.; Wang, H.; Zhang, B. Tetrahedron 2015, 71, 4344.

    16. [16]

      Synthesis of CF3CH2-containing oxindoles from acryl sulfonamides:
      (a) Zheng, L.; Yang, C.; Xu, Z.; Gao, F.; Xia, W. J. Org. Chem. 2015, 80, 5730.
      (b) Li, L.; Deng, M.; Zheng, S.; Xiong, Y.; Tan, B.; Liu, X. Org. Lett. 2014, 16, 504.
      (c) Kong, W.; Casimiro, M.; Merino, E.; Nevado, C. J. Am. Chem. Soc. 2013, 135, 14480.

    17. [17]

      Bertrand, F.; Pevere, V.; Quiclet-Sire, B.; Zard, S. Z. Org. Lett. 2001, 3, 1069.  doi: 10.1021/ol0156446

    18. [18]

      Egami, H.; Shimizu, R.; Kawamura, S.; Sodeoka, M. Angew. Chem., Int. Ed. 2013, 52, 4000.  doi: 10.1002/anie.201210250

    19. [19]

      Kawamura, S.; Dosei, K.; Valverde, E.; Ushida, K.; Sodeoka, M. J. Org. Chem. 2017, 82, 12539.  doi: 10.1021/acs.joc.7b02307

    20. [20]

      Dai, J.; Fang, C.; Xiao, B.; Yi, J.; Xu, J.; Liu, Z.; Lu, X.; Liu, L.; Fu, Y. J. Am. Chem. Soc. 2013, 135, 8436.  doi: 10.1021/ja404217t

    21. [21]

      Zheng, J.; Chen, P.; Yuan, Y.; Cheng, J. J. Org. Chem. 2017, 82, 5790.  doi: 10.1021/acs.joc.7b00598

    22. [22]

      Liang, D.; Dong, Q.; Xu, P.; Dong, Y.; Li, W.; Ma, Y. J. Org. Chem. 2018, 83, 11978.  doi: 10.1021/acs.joc.8b01861

    23. [23]

      (a) Yang, B.; Xu, X.; Qing, F. Chin. J. Chem. 2016, 34, 465.
      (b) Huang, H.; Yan, H.; Gao, G.; Yang, C.; Xia, W. Asian J. Org. Chem. 2015, 4, 674.
      (c) Lu, Q.; Liu, C.; Huang, Z.; Ma, Y.; Zhang, J.; Lei, A. Chem. Commun. 2014, 50, 14101.

    24. [24]

      (a) Wu, T.; Mu, X.; Liu, G. Angew. Chem., Int. Ed. 2011, 50, 12578.
      (b) Zhang, H.; Chen, P.; Liu, G. Synlett 2012, 23, 2749.

    25. [25]

      Krys, P.; Matyjaszewski, K. Eur. Polym. J. 2017, 89, 482.  doi: 10.1016/j.eurpolymj.2017.02.034

    26. [26]

      Studer, A.; Curran, D. P. Angew. Chem. Int. Ed. 2016, 55, 58.  doi: 10.1002/anie.201505090

    27. [27]

      Recent examples see:
      (a) Li, Z.; Yu, H.; Bolm, C. Angew. Chem., Int. Ed. 2017, 56, 9532.
      (b) Sato, M.; Azuma, H.; Daigaku, A.; Sato, S.; Takasu, K.; Okano, K.; Tokuyama, H. Angew. Chem., Int. Ed. 2017, 56, 1087.
      (c) Ren, S.; Zhang, F.; Qi, J.; Huang, Y.; Xu, A.; Yan, H.; Wang, Y. J. Am. Chem. Soc. 2017, 139, 6050.
      (d) Gharpure, S. J.; Shelke, Y. G. Org. Lett. 2017, 19, 5022.
      (e) Zhang, H.; Ma, S.; Xing, Z.; Liu, L.; Fang, B.; Xie, X.; She, X. Org. Chem. Front. 2017, 4, 2211.
      (f) Liu, X.; Luo, X.; Wu, Z.; Cui, X.; He, Y.; Huang, G. J. Org. Chem. 2017, 82, 2107.

    28. [28]

      (a) Irudayanathan, F. M.; Lee, S. Org. Lett. 2017, 19, 2318.
      (b) Liu, B.; Wang, C.; Hu, M.; Song, R.; Chen, F.; Li, J. Chem. Commun. 2017, 53, 1265.
      (c) Song, W.; Yan, P.; Shen, D.; Chen, Z.; Zeng, X.; Zhong, G. J. Org. Chem. 2017, 82, 4444.
      (d) Lan, X.; Wang, N.; Bai, C.; Lan, C.; Zhang, T.; Chen, S.; Xing, Y. Org. Lett. 2016, 18, 5986.
      (e) Deng, Y.; Tang, S.; Ding, G.; Wang, M.; Li, J.; Li, Z.; Yuan, L.; Sheng, R. Org. Biomol. Chem. 2016, 14, 9348.
      (f) Gao, B.; Xie, Y.; Yang, L.; Huang, H. Org. Biomol. Chem. 2016, 14, 2399.
      (g) Xie, Y.; Guo, S.; Wu, L.; Xia, C.; Huang, H. Angew. Chem., Int. Ed. 2015, 54, 5900.
      (h) Rong, G.; Mao, J.; Zheng, Y.; Yao, R.; Xu, X. Chem. Commun. 2015, 51, 13822.

    29. [29]

      Li, Y.; Chang, Y.; Li, Y.; Cao, C.; Yang, J.; Wang, B.; Liang, D. Adv. Synth. Catal. 2018, 360, 2488.  doi: 10.1002/adsc.201800296

    30. [30]

      (a) Gribble, G. W. Acc. Chem. Res. 1998, 31, 141.
      (b) Vaillancourt, F. H.; Yeh, E.; Vosburg, D. A.; Garneau-Tsodikova, S.; Walsh, C. T. Chem. Rev. 2006, 106, 3364.
      (c) Wang, J.; Sánchez-Roselló, M.; Acena, J. L.; Pozo, C. del; Sorochinsky, A. E.; Fustero, S.; Soloshonok V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
      (d) Paul C.; Pohnert, G. Nat. Prod. Rep. 2011, 28, 186.
      (e) Latham, J.; Brandenburger, E.; Shepherd, S. A.; Menon, B. R. K.; Micklefield, J. Chem. Rev. 2018, 118, 232.

    31. [31]

      (a) Sitachitta, N.; Rossi, J.; Roberts, M. A.; Gerwick, W. H.; Fletcher M. D.; Willis, C. L. J. Am. Chem. Soc. 1998, 120, 7131.
      (b) Owusu-Ansah, E.; Durow, A. C.; Harding, J. R.; Jordan, A. C.; O'Connell S.J.; Willis, C. L. Org. Biomol. Chem. 2011, 9, 265.
      (c) Yu, H.-Y.; Bao, L.-J.; Liang, Y.; Zeng, E. Y. Environ. Sci. Technol. 2011, 45, 5245.
      (d) Wagner, C.; Omari M. E.; Kö nig, G. M. J. Nat. Prod. 2009, 72, 540.
      (e) Ardá, A.; Soengas, R. G.; Nieto, M. I.; Jiménez, C.; Rodríguez, J. Org. Lett. 2008, 10, 2175.
      (f) Orjala, J. O.; Gerwick, W. H. J. Nat. Prod. 1996, 59, 427.
      (g) Nguyen, V.-A.; Willis, C. L.; Gerwick, W. H. Chem. Commun. 2001, 1934.
      (h) Durow, A. C.; Long, G. C.; O'Connell, S. J.; Willis, C. L. Org. Lett. 2006, 8, 5401.

    32. [32]

      Pan, C.; Gao, D.; Yang, Z.; Wu, C.; Yu, J. Org. Biomol. Chem. 2018, 16, 5752.  doi: 10.1039/C8OB01554F

    33. [33]

      Simmons, E. M.; Hartwig, J. Angew. Chem., Int. Ed. 2012, 51, 3066.  doi: 10.1002/anie.201107334

    34. [34]

      (a) Chan, C.-W.; Zhou, Z.; Chan, A. S. C.; Yu, W.-Y. Org. Lett. 2010, 12, 3296.
      (b) Jia, X.; Zhang, S.; Wang, W.; Luo, F.; Cheng, J. Org. Lett. 2009, 11, 3120.
      (c) Tang, B.-X.; Song, R.-J.; Li, J.-H. J. Am. Chem. Soc. 2010, 132, 8900.
      (d) Wu, Y.; Li, B.; Mao, F.; Li, X.; Kwong, F. Y. Org. Lett. 2011, 13, 3258.

    35. [35]

      Pan, C.; Yang, Z.; Gao, D.; Yu, J. Org. Biomol. Chem. 2018, 16, 6035.  doi: 10.1039/C8OB01329B

    36. [36]

      (a) Tercel, M.; Lee, H. H.; Mehta, S. Y.; Youte Tendoung, J.-J.; Bai, S. Y.; Liyanage, H. D. S.; Pruijn, F. B. J. Med. Chem. 2017, 60, 5834.
      (b) Yan, J.; Chen, J.; Zhang, S.; Hu, J.; Huang, L.; Li, X. J. Med. Chem. 2016, 59, 5264.
      (c) Palmerini, C. A.; Tartacca, F.; Mazzoni, M.; Granieri, L.; Goracci, L.; Scrascia, A.; Lepri, S. Eur. J. Med. Chem. 2015, 102, 403.
      (d) Na, Z.; Pan, S.; Uttamchandani, M.; Yao, S. Q. Angew. Chem., Int. Ed. 2014, 53, 8421.
      (e) Kandekar, S.; Preet, R.; Kashyap, M.; Mu, R. P.; Mohapatra, P.; Das, D.; Satapathy, S. R.; Siddharth, S.; Jain, V.; Choudhuri, M.; Kundu, C. N.; Guchhait, S. K.; Bharatam, P. V. ChemMedChem 2013, 8, 1873.
      (f) Zhao, R. Y.; Erickson, H. K.; Leece, B. A.; Reid, E. E.; Goldmacher, V. S.; Lambert, J. M.; Chari, R. V. J. J. Med. Chem. 2012, 55, 766.

    37. [37]

      (a) Chansaenpak, K.; Wang, M.; Liu, S.; Wu, Z.; Yuan, H.; Conti, P. S.; Li, Z.; Gabbaï, F. P. RSC Adv. 2016, 6, 23126.
      (b) Cai, Z.; Ouyang, Q.; Zeng, D.; Nguyen, K. N.; Modi, J.; Wang, L.; White, A. G.; Rogers, B. E.; Xie, X.; Anderson, C. J. J. Med. Chem. 2014, 57, 6019.

    38. [38]

      (a) Dousson, C.; Alexandre, F.; Amador, A.; Bonaric, S.; Bot, S.; Caillet, C.; Convard, T.; da Costa, D.; Lioure, M.; Roland, A.; Rosinovsky, E.; Maldonado, S.; Parsy, C.; Trochet, C.; Storer, R.; Stewart, A.; Wang, J.; Mayes, B. A.; Musiu, C.; Poddesu, B.; Vargiu, L.; Liuzzi, M.; Moussa, A.; Jakubik, J.; Hubbard, L.; Seifer, M.; Standring, D. J. Med. Chem. 2016, 59, 1891.
      (b) Alexandre, F.; Amador, A.; Bot, S.; Caillet, C.; Convard, T.; Jakubik, J.; Musiu, C.; Poddesu, B.; Vargiu, L.; Liuzzi, M.; Roland, A.; Seifer, M.; Standring, D.; Storer, R.; Dousson, C. B. J. Med. Chem. 2011, 54, 392.

    39. [39]

      Okon, A.; Matos de Souza, M. R.; Shah, R.; Amorim, R.; da Costa, L. J.; Wagner, C. R. ACS Med. Chem. Lett. 2017, 8, 958.  doi: 10.1021/acsmedchemlett.7b00277

    40. [40]

      Li, M.; Nyantakyi, S. A.; Gopal, P.; Aziz, D. B.; Dick, T.; Go, M. ACS Med. Chem. Lett. 2017, 8, 1165.  doi: 10.1021/acsmedchemlett.7b00287

    41. [41]

      (a) Fricke, J.; Blei, F.; Hoffmeister, D. Angew. Chem., Int. Ed. 2017, 56, 12352.
      (b) Hofmann, A.; Heim, R.; Brack, A.; Kobel, H.; Frey, A.; Ott, H.; Petrzilka, T.; Troxler, F. Helv. Chim. Acta 1959, 42, 1557.

    42. [42]

      Wu, S.; Cao, Q.; Wang, X.; Cheng, K.; Cheng, Z. Chem. Commun. 2014, 50, 8919.  doi: 10.1039/C4CC03296A

    43. [43]

      Vaillard, S. E.; Postigo, A.; Rossi, R. A. J. Org. Chem. 2002, 67, 8500.  doi: 10.1021/jo026404m

    44. [44]

      Gagosz, F.; Zard, S. Z. Synlett 2003, 387.

    45. [45]

      Bruch, A.; Ambrosius, A.; Fröhlich, R.; Studer, A.; Guthrie, D. B.; Zhang, H.; Curran, D. P. J. Am. Chem. Soc. 2010, 132, 11452.  doi: 10.1021/ja105070k

    46. [46]

      Bruch, A.; Fröhlich, R.; Grimme, S.; Studer, A.; Curran, D. P. J. Am. Chem. Soc. 2011, 133, 16270.  doi: 10.1021/ja2070347

    47. [47]

      Liang, D.; Ge, D.; Lü, Y.; Huang, W.; Wang, B.; Li, W. J. Org. Chem. 2018, 83, 4681.  doi: 10.1021/acs.joc.8b00450

    48. [48]

      (a) Xu, J.; Yu, X.; Song, Q. Org. Lett. 2017, 19, 980.
      (b) Li, Y.; Sun, M.; Wang, H.; Tian, Q.; Yang, S. Angew. Chem., Int. Ed.2013, 52, 3972.
      (c) Zheng, J.; Zhang, Y.; Wang, D.; Cui, S. Org. Lett. 2016, 18, 1768.

  • 加载中
    1. [1]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    2. [2]

      Zhenxing Liu Jiaen Hu Zishi Cheng Xinqi Hao . 基础有机化学教学中烯烃的氧化反应. University Chemistry, 2025, 40(6): 139-144. doi: 10.12461/PKU.DXHX202408107

    3. [3]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    4. [4]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    5. [5]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    6. [6]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    7. [7]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    8. [8]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    9. [9]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    10. [10]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    11. [11]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    12. [12]

      Wen Jiang Jieli Lin Zhongshu Li . 低配位含磷官能团的研究进展. University Chemistry, 2025, 40(8): 138-151. doi: 10.12461/PKU.DXHX202409144

    13. [13]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    14. [14]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    15. [15]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    16. [16]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    17. [17]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    18. [18]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    19. [19]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    20. [20]

      Xinxin Wu . 基础有机化学教学中自由基重排反应的课程设计及其课程思政元素的融入. University Chemistry, 2025, 40(6): 316-325. doi: 10.12461/PKU.DXHX202408055

Metrics
  • PDF Downloads(18)
  • Abstract views(2138)
  • HTML views(304)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return