Citation: Tang Hao, Luo Junfei, Xie Pan. Advances on the Synthesis of Aryl Ethers via Dehydrogenative Coupling[J]. Chinese Journal of Organic Chemistry, ;2019, 39(10): 2735-2743. doi: 10.6023/cjoc201904011 shu

Advances on the Synthesis of Aryl Ethers via Dehydrogenative Coupling

  • Corresponding author: Luo Junfei, luojunfei@nbu.edu.cn Xie Pan, pan.xie@sust.edu.cn
  • Received Date: 4 April 2019
    Revised Date: 9 May 2019
    Available Online: 6 October 2019

    Fund Project: the Education Foundation of Zhejiang Province Y201839228Project supported by the Natural Science Foundation of Zhejiang Province (No. LQ19B020002), the Municipal Natural Science Foundation of Ningbo City (No. 2018A610241), the Education Foundation of Zhejiang Province (No. Y201839228) and the K. C. Wong Magna Fund in Ningbo Universitythe Municipal Natural Science Foundation of Ningbo City 2018A610241the Natural Science Foundation of Zhejiang Province LQ19B020002

Figures(12)

  • Aryl ethers are important central motifs that are abundant in many natural products and drug molecules, as well as versatile building blocks for organic synthesis. Aryl ethers were usually synthesized through the coupling reactions between leaving group substituted arenes and alcohols. However, the introduction of leaving group requires extra synthetic operation and produces lots of wastes. Over the past decade, the method for the synthesis of aryl ethers via C-H alkoxylation or aryloxylation has received much attention due to its potential as an atom and step efficient methodology. Herein, the research advances on the synthesis of aryl ethers through dehydrogenative coupling are reviewed. The detailed substrate scopes and reaction mechanisms, as well as the limitations of current procedures and the prospects for the future, are discussed.
  • 加载中
    1. [1]

      (a) Jabran, K.; Ehsanullah; Hussain, M.; Farooq, M.; Babar, M.; Doǧan M.-N.; Lee, D.-J. Weed Biol. Manage. 2012, 12, 136.
      (b) Negro, R.; Formoso, G.; Mangieri, T.; Pezzarossa, A.; Dazzi, D.; Hassan, H. J. Clin. Endocrinol. Metab. 2006, 91, 2587.
      (c) Kosenkova, Y.-S.; Polovinka, M.; Komarova, N.; Korchagina, D.; Kurochkina, N. Y.; Cheremushkina, V.; Salakhutdinov, N. Chem. Nat. Compd. 2007, 43, 712.
      (d) Deng, H.; Jung, J.-K.; Liu, T.; Kuntz, K. W.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2003, 125, 9032.

    2. [2]

    3. [3]

    4. [4]

      (a) Chan, D. M. T.; Monaco, K. L.; Wang, R.-P.; Winters, M. P. Tetrahedron Lett. 1998, 39, 2933.
      (b) Evans, D. A.; Katz, J. L.; West, T. R. Tetrahedron Lett. 1998, 39, 2937.
      (c) Lam, P. Y. S.; Vincent, G.; Clark, C. G.; Deudon, S.; Jadhav, P. K. Tetrahedron Lett. 2001, 42, 3415.

    5. [5]

      (a) Aranyos, A.; Old, D. W.; Kiyomori, A.; Wolfe, J. P.; Sadighi, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 4369.
      (b) Torraca, K. E.; Huang, X.; Parrish, C. A.; Buchwald, S. L. J. Am. Chem. Soc. 2001, 123, 10770.
      (c) Mann, G.; Hartwig, J. F. J. Am. Chem. Soc. 1996, 118, 13109.
      (b) Mann, G.; Incarvito, C.; Rheingold, A. L.; Hartwig, J. F. J. Am. Chem. Soc. 1999, 121, 3224.
      (c) Hartwig, J. F. Nature 2008, 455, 314.

    6. [6]

      Terrett, J. A.; Cuthbertson, J. D.; Shurtleff, V. W.; MacMillan, D. W. C. Nature 2015, 524, 330.  doi: 10.1038/nature14875

    7. [7]

    8. [8]

      Desai, L. V.; Malik, H. A.; Sanford, M. S. Org. Lett. 2006, 8, 1141.  doi: 10.1021/ol0530272

    9. [9]

      Wang, G.-W.; Yuan, T.-T. J. Org. Chem. 2010, 75, 476.  doi: 10.1021/jo902139b

    10. [10]

      Jiang, T.-S.; Wang, G.-W. J. Org. Chem. 2012, 77, 9504  doi: 10.1021/jo301964m

    11. [11]

      Shi, S.-P.; Kuang, C.-X. J. Org. Chem. 2014, 79, 6105.  doi: 10.1021/jo5008306

    12. [12]

      Li, W.; Sun, P.-P. J. Org. Chem. 2012, 77, 8362  doi: 10.1021/jo301384r

    13. [13]

      Yin, Z.-W.; Jiang, X.-Q.; Sun, P.-P. J. Org. Chem. 2013, 78, 10002  doi: 10.1021/jo401623j

    14. [14]

      Zhang, C.; Sun, P.-P. J. Org. Chem. 2014, 79, 8457.  doi: 10.1021/jo5014146

    15. [15]

      Gao, T.-T.; Sun, P.-P. J. Org. Chem. 2014, 79, 9888.  doi: 10.1021/jo501902d

    16. [16]

      Peron, F.; Fossey, C.; Santos, J. O. S.; Cailly, T.; Fabis, F. Chem.-Eur. J. 2014, 20, 1.  doi: 10.1002/chem.201390210

    17. [17]

      Chen, F.-J.; Zhao, S.; Hu, F.; Chen, K.; Zhang, Q.; Zhang, S.-Q.; Shi, B.-F. Chem. Sci. 2013, 4, 4187.  doi: 10.1039/c3sc51993g

    18. [18]

      (a) Shen, T.; Wang, X.-N.; Lou, H.-X. Nat. Prod. Rep. 2009, 26, 916.
      (b) Veitch, N. C. Nat. Prod. Rep. 2007, 24, 417.
      (c) Watzke, A.; O'Malley, S. J.; Bergman, R. G.; Ellman, J. A. J. Nat. Prod. 2006, 69, 1231.
      (d) Tsui, G. C.; Tsoung, J.; Dougan, P.; Lautens, M. Org. Lett. 2012, 14, 5542.

    19. [19]

      Wang, X.-S.; Lu, Y.; Dai, H.-X.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 12203.  doi: 10.1021/ja105366u

    20. [20]

      Wang, H.-B.; Li, G.; Engle, K. M.; Yu, J.-Q.; Davies, H. M. L. J. Am. Chem. Soc. 2013, 135, 6774.  doi: 10.1021/ja401731d

    21. [21]

      Cheng, X.-F.; Li, Y.; Su, Y.-M.; Yin, F.; Wang, J.-Y.; Sheng, J.; Vora, H. U.; Wang, X.-S.; Yu, J.-Q. J. Am. Chem. Soc. 2013, 135, 1236.  doi: 10.1021/ja311259x

    22. [22]

      Wang, Z.-L.; Zhao, L.; Wang, M.-X. Org. Lett. 2011, 13, 6560.  doi: 10.1021/ol202874n

    23. [23]

      Zhang, L.-B.; Hao, X.-Q.; Zhang, S.-K.; Liu, K.; Ren, B.-Z.; Gong, J.-F.; Niu, J.-L.; Song, M.-P. J. Org. Chem. 2014, 79, 10399.  doi: 10.1021/jo502005j

    24. [24]

      Bhadra, S.; Matheis, C.; Katayev, D.; Gooßen, L. J. Angew. Chem. 2013, 125, 9449.  doi: 10.1002/ange.201303702

    25. [25]

      Roane, J.; Daugulis, O. Org. Lett. 2013, 15, 5842.  doi: 10.1021/ol402904d

    26. [26]

      Yin, X.-S.; Li, Y.-C.; Yuan, J.; Gua, W.-J.; Shi, B.-F. Org. Chem. Front. 2015, 2, 119.  doi: 10.1039/C4QO00276H

    27. [27]

      Zhang, L.-B.; Hao, X.-Q.; Zhang, S.-K.; Liu, Z.-J.; Zheng, X.-X.; Gong, J.-F.; Niu, J.-F.; Song, M.-P. Angew. Chem., Int. Ed. 2015, 54, 272.  doi: 10.1002/anie.201409751

    28. [28]

      Zheng, Y.-W.; Ye, P.; Chen, B.; Meng, Q.-Y.; Feng, K.; Wang, W.-G.; Wu, L.-Z.; Tung, C.-H. Org. Lett. 2017, 19, 2206.  doi: 10.1021/acs.orglett.7b00463

    29. [29]

      Ohkubo, K.; Kobayashi, T.; Fukuzumi, S. Opt. Express 2012, 20, A360.  doi: 10.1364/OE.20.00A360

    30. [30]

      Tang, L.; Pang, Y.; Yan, Q.; Shi, L.-Q.; Huang, J.-H.; Du, Y.-F.; Zhao, K. J. Org. Chem. 2011, 76, 2744.  doi: 10.1021/jo2000644

    31. [31]

      Xiao, B.; Gong, T.-J.; Liu, Z.-J.; Liu, J.-H.; Luo, D.-F.; Xu, J.; Liu L. J. Am. Chem. Soc. 2011, 133, 9250.  doi: 10.1021/ja203335u

    32. [32]

      Wei, Y.; Yoshikai, N. J. Org. Chem. 2011, 13, 5504.

    33. [33]

      Zhao, J.-J.; Wang, Y.; He, Y.-M.; Liu, L.-Y.; Zhu, Q. Org. Lett. 2012, 14, 1078.  doi: 10.1021/ol203442a

    34. [34]

      (a) Zhao, J.-J.; Wang, Y.; Zhu, Q. Synthesis 2012, 44, 1551.
      (b) Zhao, J.-J.; Zhang, Q.; Liu, L.-Y.; He, Y.-M.; Li, J.; Li, J.; Zhu, Q. Org. Lett. 2012, 14, 5362.

    35. [35]

      Roane, J.; Daugulis, O. Org. Lett. 2013, 15, 5842.  doi: 10.1021/ol402904d

    36. [36]

      Hao, X.-Q.; Chen, L.-J.; Ren, B.; Li, L.-Y.; Yang, X.-Y.; Gong, J.-F.; Niu, J.-L.; Song, M.-P. Org. Lett. 2014, 16, 1104.  doi: 10.1021/ol500166d

    37. [37]

      Zhou, Y.-F.; Zhu, J.-M.; Li, B.; Zhang, Y.; Feng, J.; Hall, A.; Shi, J.-Y.; Zhu, W.-L. Org. Lett. 2016, 18, 3803

    38. [38]

      Kumar, G. S.; Pieber, B.; Reddy, K. R.; Kappe, C. O. Chem.-Eur. J. 2012, 18, 6124.  doi: 10.1002/chem.201200815

    39. [39]

      Barve, B. D.; Wu, Y.-C.; El-Shazly, M.; Korinek, M.; Cheng, Y.-B.; Wang, J.-J.; Chang, F.-R. Tetrahedron 2015, 71, 2290  doi: 10.1016/j.tet.2015.02.035

    40. [40]

      Barve, B. D.; Wu, Y.-C.; El-Shazly, M.; Korinek, M.; Cheng, Y.-B.; Wang, J.-J.; Chang, F.-R. Org. Lett. 2014, 16, 1912.  doi: 10.1021/ol5004115

    41. [41]

      Boominathan, S. S. K.; Hu, W.-P.; Senadi, G. C.; Vandavasia, J. K.; Wanga, J.-J. Chem. Commun. 2014, 50, 6726.  doi: 10.1039/C4CC02425G

  • 加载中
    1. [1]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    2. [2]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    3. [3]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    4. [4]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

    5. [5]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    6. [6]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    7. [7]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    8. [8]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    9. [9]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    10. [10]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    11. [11]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    12. [12]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    13. [13]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    14. [14]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    15. [15]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    16. [16]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    17. [17]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    18. [18]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    19. [19]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    20. [20]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

Metrics
  • PDF Downloads(18)
  • Abstract views(2495)
  • HTML views(504)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return