Citation: Wang Zhen, Zhang Ling, Zhang Fugeng, Wang Bin. Synthesis of β-Carbolines through Tetra-n-butylammonium Bromide-Mediated Cycloaromatization Reaction of N-Methylaniline with Tryptophan Derivatives[J]. Chinese Journal of Organic Chemistry, ;2019, 39(8): 2323-2327. doi: 10.6023/cjoc201903077 shu

Synthesis of β-Carbolines through Tetra-n-butylammonium Bromide-Mediated Cycloaromatization Reaction of N-Methylaniline with Tryptophan Derivatives

  • Corresponding author: Zhang Fugeng, clare2006@163.com Wang Bin, wangbin@nankai.edu.cn
  • These authors contributed equally to this work
    Dedicated to the 100th anniversary of the birth of Professor Ruyu Chen
  • Received Date: 30 March 2019
    Revised Date: 16 May 2019
    Available Online: 3 August 2019

    Fund Project: the National Natural Science Foundation of China 21172120Project supported by the National Natural Science Foundation of China ((Nos. 21172120, 21472093)the National Natural Science Foundation of China 21472093

Figures(2)

  • A mild and efficient nBu4NBr-mediated oxidative cycloaromatization to prepare β-carbolines from readily available tryptophans and N-methylaniline is described. The present metal free protocol is complementary to the existing methods for the synthesis of aromatic β-carbolines.
  • 加载中
    1. [1]

      (a) Cao, R. H.; Peng, W. L.; Wang, Z. H.; Xu, A. L. Curr. Med. Chem. 2007, 14, 479.
      (b) Lancianesi, S.; Palmieri, A.; Petrini, M. Chem. Rev. 2014, 114, 7108.
      (c) Nagle, A. S.; Khare, S.; Kumar, A. B.; Supek, F.; Buchynskyy, A.; Mathison, C. J. N.; Chennamaneni, N. K.; Pendem, N.; Buckner, F. S.; Gelb, M. H.; Molteni, V. Chem. Rev. 2014, 114, 11305.
      (d) Gema, D.; Javier, P. C. Eur. J. Org. Chem. 2011, 2011, 7243.
      (e) Zhang, G.-J.; Hu, F.; Jiang, H.; Dai, L.-M.; Liao, H.-B.; Li, N.; Wang, H.-S.; Pan, Y.-M.; Liang, D. Phytochemistry 2018, 145, 68.
      (f) Venkataramana, R. P. O.; Hridhay, M.; Nikhil, K.; Khan, S.; Jha, P. N.; Shah, K.; Kumar, D. Bioorg. Med. Chem. Lett. 2018, 28, 1278.
      (g) Devi, N.; Kumar, S.; Pandey, S. K.; Singh, V. Asian J. Org. Chem. 2018, 7, 6.

    2. [2]

      (a) Shilabin, A. G.; Kasanah, N.; Tekwani, B. L.; Hamann, M. T. J. Nat. Prod. 2008, 71, 1218.
      (b) Winkler, J. D.; Londregan, A. T.; Hamann, M. T. Org. Lett. 2006, 8, 2591.

    3. [3]

      (a) Boursereau, Y.; Coldham, I. Bioorg. Med. Chem. Lett. 2004, 14, 5841.
      (b) Guan, H.; Chen, H.; Peng, W.; Ma, Y.; Cao, R.; Liu, X.; Xu, A. Eur. J. Med. Chem. 2006, 41, 1167.
      (c) Rashid, M. A.; Gustafson, K. R.; Boyd, M. R. J. Nat. Prod. 2001, 64, 1454.
      (d) Prinsep, M. R.; Blunt, J. W.; Munro, M. H. G. J. Nat. Prod. 1991, 54, 1068.
      (e) Yang, J.-M.; Zhu, Y.-H.; Chen, S.; Lu, X.; Wu, Y.-M.; Ma, F.-E.; Li, L.-P.; Yang, Y.; Shi, Z.-H.; Huang, K.-Y.; Hong, X.; Jiang, P.; Peng, Y. MedChemComm 2018, 9, 100.
      (f) Dighe, S. U.; Khan, S.; Soni, I.; Jain, P.; Shukla, S.; Yadav, R.; Sen, P.; Meeran, S. M.; Batra, S. J. Med. Chem. 2015, 58, 3485.
      (g) Kamal, A.; Srinivasulu, V.; Nayak, V. L.; Sathish, M.; Shankaraiah, N.; Bagul, C.; Reddy, N. V. S.; Rangaraj, N.; Nagesh, N. ChemMedChem 2014, 9, 2084.

    4. [4]

      (a) Tang, J.; Wang, Y.; Wang, R.; Dong, Z.; Yang, L.; Zheng, Y.; Liu, J. Chem. Biodiversity 2008, 5, 447.
      (b) Wang, Y.-H.; Tang, J.-G.; Wang, R.-R.; Yang, L.-M.; Dong, Z.-J.; Du, L.; Shen, X.; Liu, J.-K.; Zheng, Y.-T. Biochem. Biophys. Res. Commun. 2007, 355, 1091.
      (c) Yu, X.; Lin, W.; Li, J.; Yang, M. Bioorg. Med. Chem. Lett. 2004, 14, 3127.

    5. [5]

      (a) Hagen, T. J.; Skolnick, P.; Cook, J. M. J. Med. Chem. 1987, 30, 750.
      (b) Müller, W. E.; Fehske, K. J.; Borbe, H. O.; Wollert, U.; Nanz, C.; Rommelspacher, H. Pharmacol., Biochem. Behav. 1981, 14, 693.

    6. [6]

      (a) Im, Y.; Lee, J. Y. Chem. Commun. 2013, 49, 5948.
      (b) Paul, B. K.; Ghosh, N.; Mukherjee, S. RSC Adv. 2016, 6, 9984.
      (c) Swami, S.; Behera, D.; Agarwala, A.; Verma, V. P.; Shrivastava, R. New J. Chem. 2018, Ahead of Print.

    7. [7]

      (a) Whaley, W. M.; Govindachari, T. R. In Organic Reactions, John Wiley & Sons, Inc., 2004.
      (b) Cox, E. D.; Cook, J. M. Chem. Rev. 1995, 95, 1797.
      (c) Rao, R. N.; Maiti, B.; Chanda, K. ACS Comb. Sci. 2017, 19, 199.
      (d) Gobe, V.; Gandon, V.; Guinchard, X. Adv. Synth. Catal. 2018, 360, 1280.
      (e) Glenn, C. C.; Jan, B. Eur. J. Org. Chem. 2004, 2004, 1286.

    8. [8]

      Bischler, A.; Napieralski, B. Ber. Dtsch. Chem. Ges. 1893, 26, 1903.  doi: 10.1002/cber.189302602143

    9. [9]

      (a) Singh, D.; Sharma, P.; Kumar, R.; Pandey, S. K.; Malakar, C. C.; Singh, V. Asian J. Org. Chem. 2018, 7, 383.
      (b) Singh, D.; Hazra, C. K.; Malakar, C. C.; Pandey, S. K.; Kaith, B. S.; Singh, V. ChemistrySelect 2018, 3, 4859.
      (c) Kovvuri, J.; Nagaraju, B.; Nayak, V. L.; Akunuri, R.; Rao, M. P. N.; Ajitha, A.; Nagesh, N.; Kamal, A. Eur. J. Med. Chem. 2018, 143, 1563.
      (d) Singh, D.; Kumar, V.; Devi, N.; Malakar, C. C.; Shankar, R.; Singh, V. Adv. Synth. Catal. 2017, 359, 1213.
      (e) Manasa, K. L.; Tangella, Y.; Ramu, G.; Babu, B. N. ChemistrySelect 2017, 2, 9162.
      (f) Galvis, C. E. P.; Kouznetsov, V. V. Synthesis 2017, 49, 4535.
      (g) Hati, S.; Sen, S. Tetrahedron Lett. 2016, 57, 1040.
      (h) Meesala, R.; Arshad, A. S. M.; Mordi, M. N.; Mansor, S. M. Tetrahedron 2016, 72, 8537.
      (i) Kamal, A.; Tangella, Y.; Manasa, K. L.; Sathish, M.; Srinivasulu, V.; Chetna, J.; Alarifi, A. Org. Biomol. Chem. 2015, 13, 8652.
      (j) Kamal, A.; Sathish, M.; Prasanthi, A. V. G.; Chetna, J.; Tangella, Y.; Srinivasulu, V.; Shankaraiah, N.; Alarifi, A. RSC Adv. 2015, 5, 90121.
      (k) Kamal, A.; Narasimha Rao, M. P.; Swapna, P.; Srinivasulu, V.; Bagul, C.; Shaik, A. B.; Mullagiri, K.; Kovvuri, J.; Reddy, V. S.; Vidyasagar, K.; Nagesh, N. Org. Biomol. Chem. 2014, 12, 2370.

    10. [10]

      (a) Ding, S.; Shi, Z.; Jiao, N. Org. Lett. 2010, 12, 1540.
      (b) Tang, S.; Wang, J.; Xiong, Z.; Xie, Z.; Li, D.; Huang, J.; Zhu, Q. Org. Lett. 2017, 19, 5577.
      (c) Mulcahy, S. P.; Varelas, J. G. Tetrahedron Lett. 2013, 54, 6599.
      (d) Dhara, S.; Singha, R.; Ahmed, A.; Mandal, H.; Ghosh, M.; Nuree, Y.; Ray, J. K. RSC Adv. 2014, 4, 45163.
      (e) Yan, Q.; Gin, E.; Banwell, M. G.; Willis, A. C.; Carr, P. D. J. Org. Chem. 2017, 82, 4328.
      (f) Dhiman, S.; Mishra, U. K.; Ramasastry, S. S. V. Angew. Chem., Int. Ed. 2016, 55, 7737.
      (g) Pan, X.; Bannister, T. D. Org. Lett. 2014, 16, 6124.
      (h) Wang, T.-T.; Zhang, D.; Liao, W.-W. Chem. Commun. 2018, 54, 2048.

    11. [11]

      Dalvi, B. A.; Lokhande, P. D. Tetrahedron Lett. 2018, 59, 2145.  doi: 10.1016/j.tetlet.2018.01.061

    12. [12]

      Nissen, F.; Richard, V.; Alayrac, C.; Witulski, B. Chem. Commun. 2011, 47, 6656.  doi: 10.1039/c1cc11298h

    13. [13]

      (a) Varelas, J. G.; Khanal, S.; O'Donnell, M. A.; Mulcahy, S. P. Org. Lett. 2015, 17, 5512.
      (b) Webb, N. J.; Marsden, S. P.; Raw, S. A. Org. Lett. 2014, 16, 4718.

    14. [14]

      (a) Verniest, G.; England, D.; De Kimpe, N.; Padwa, A. Tetrahedron 2010, 66, 1496.
      (b) Subba Reddy, B. V.; Rajashekhar Reddy, M.; Yarlagadda, S.; Ravikumar Reddy, C.; Ravi Kumar, G.; Yadav, J. S.; Sridhar, B. J. Org. Chem. 2015, 80, 8807.

    15. [15]

      Too, P. C.; Chua, S. H.; Wong, S. H.; Chiba, S. J. Org. Chem. 2011, 76, 6159.  doi: 10.1021/jo200897q

    16. [16]

      Zhu, Y.; Liu, M.; Cai, Q.; Jia, F.; Wu, A. Chem.-Eur. J. 2013, 19, 10132.  doi: 10.1002/chem.201301734

    17. [17]

      (a) Li, L. T.; Huang, J.; Li, H. Y.; Wen, L. J.; Wang, P.; Wang, B. Chem. Commun. 2012, 48, 5187.
      (b) Li, L. T.; Li, H. Y.; Xing, L. J.; Wen, L. J.; Wang, P.; Wang, B. Org. Biomol. Chem. 2012, 10, 9519.

    18. [18]

      Wang, B.; Wong, H. N. C. Bull. Chem. Soc. Jpn. 2018, 91, 710.  doi: 10.1246/bcsj.20170393

    19. [19]

      Guo, F.; Wang, L.; Mao, S.; Zhang, C.; Yu, J.; Han, J. Tetrahedron 2012, 68, 8367.  doi: 10.1016/j.tet.2012.06.107

    20. [20]

      (a) Benson, S. C.; Lee, L.; Yang, L.; Snyder, J. K. Tetrahedron 2000, 56, 1165.
      (b) Chiotellis, A.; Muller, A.; Mu, L.; Keller, C.; Schibli, R.; Krä mer, S. D.; Ametamey, S. M. Mol. Pharmaceutics 2014, 11, 3839.

    21. [21]

      (a) Garcia, J. M.; Curzon, S. S.; Watts, K. R.; Konopelski, J. P. Org. Lett. 2012, 14, 2054.
      (b) Dua, R. K.; Phillips, R. S. Tetrahedron Lett. 1992, 33, 29.
      (c) Tang, J.-G.; Wang, Y.-H.; Wang, R.-R.; Dong, Z.-J.; Yang, L.-M.; Zheng, Y.-T.; Liu, J.-K. Chem. Biodiversity 2008, 5, 447.
      (d) De Croos, P. Z.; Sangdee, P.; Stockwell, B. L.; Kar, L.; Thompson, E. B.; Johnson, M. E.; Currie, B. L. J. Med. Chem. 1990, 33, 3138.

    22. [22]

      Xu, W.; Zhao, M.; Wang, Y.; Zhu, H.; Wang, Y.; Zhao, S.; Wu, J.; Peng, S. MedChemComm 2016, 7, 1730.  doi: 10.1039/C6MD00215C

    23. [23]

      Sun, R.; Liu, R.; Zhou, C.; Ren, Z.; Guo, L.; Ma, Q.; Fan, W.; Qiu, L.; Yu, H.; Shao, G.; Cao, R. MedChemComm 2015, 6, 2170.  doi: 10.1039/C5MD00312A

    24. [24]

      Ikeda, R.; Kimura, T.; Tsutsumi, T.; Tamura, S.; Sakai, N.; Konakahara, T. Bioorg. Med. Chem. Lett. 2012, 22, 3506.  doi: 10.1016/j.bmcl.2012.03.077

    25. [25]

      Primas, N.; El-Kashef, H.; Lancelot, J.-C.; Lesnard, A.; Dodd, R. H.; Raulta, S. ARKIVOC 2010, 2010, 14.

    26. [26]

      Cao, R.; Chen, Q.; Hou, X.; Chen, H.; Guan, H.; Ma, Y.; Peng, W.; Xu, A. Bioorg. Med. Chem. 2004, 12, 4613.  doi: 10.1016/j.bmc.2004.06.038

  • 加载中
    1. [1]

      Zhanhui Yang Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032

    2. [2]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    3. [3]

      Xingfen HuangJiefeng ZhuChuan He . Catalytic enantioselective N-silylation of sulfoximine. Chinese Chemical Letters, 2024, 35(4): 108783-. doi: 10.1016/j.cclet.2023.108783

    4. [4]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    5. [5]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    6. [6]

      Lijun MaoShuo LiXin ZhangZhan-Ting LiDa Ma . Cucurbit[n]uril-based nanostructure construction and modification. Chinese Chemical Letters, 2024, 35(8): 109363-. doi: 10.1016/j.cclet.2023.109363

    7. [7]

      Jialin CaiYizhe ChenRuiwen ZhangCheng YuanZeyu JinYongting ChenShiming ZhangJiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255

    8. [8]

      Yan GuoHongtao BianLe YuJiani MaYu Fang . Photochemical reaction mechanism of benzophenone protected guanosine at N7 position. Chinese Chemical Letters, 2025, 36(3): 109971-. doi: 10.1016/j.cclet.2024.109971

    9. [9]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    10. [10]

      Yun-Xin HuangLin-Qian YuKe-Yu ChenHao WangShou-Yan ZhaoBao-Cheng HuangRen-Cun Jin . Biochar with self-doped N to activate peroxymonosulfate for bisphenol-A degradation via electron transfer mechanism: The active edge graphitic N site. Chinese Chemical Letters, 2024, 35(9): 109437-. doi: 10.1016/j.cclet.2023.109437

    11. [11]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

    12. [12]

      Ke ZhangYajing WeiLinhua XieSha KangFei LiChuanyi Wang . Amorphous titanium carbide on N-defective g-C3N5 for high-efficiency photocatalytic NO removal. Chinese Chemical Letters, 2025, 36(3): 110086-. doi: 10.1016/j.cclet.2024.110086

    13. [13]

      Entian CuiYulian LuZhaoxia LiZhilei ChenChengyan GeJizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288

    14. [14]

      Yan LuoYan-Jiao LuMei-Mei PanYu-Feng LiangWei-Min ShiChun-Hua ChenCui LiangGui-Fa SuDong-Liang Mo . Rapidly diastereoselective assembly of ten-membered N-heterocycles between two 1,3-dipoles and their diversity to access fused N-heterocycles. Chinese Chemical Letters, 2025, 36(5): 110207-. doi: 10.1016/j.cclet.2024.110207

    15. [15]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    16. [16]

      Dake LiuShuyan LiuFanlei HuZhongtang LiZhongjun LiN-Glycosylated type Ⅱ collagen peptides as therapeutic saccharide vaccines for rheumatoid arthritis. Chinese Chemical Letters, 2024, 35(5): 108762-. doi: 10.1016/j.cclet.2023.108762

    17. [17]

      Jun XiongKe-Ke ChenNeng-Bin XieWei ChenWen-Xuan ShaoTong-Tong JiSi-Yu YuYu-Qi FengBi-Feng Yuan . Demethylase-assisted site-specific detection of N1-methyladenosine in RNA. Chinese Chemical Letters, 2024, 35(5): 108953-. doi: 10.1016/j.cclet.2023.108953

    18. [18]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    19. [19]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

    20. [20]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

Metrics
  • PDF Downloads(6)
  • Abstract views(761)
  • HTML views(93)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return