Citation: Wang Qiaotian, Han Caifang, Feng Xiangqing, Du Haifeng. Chiral Spiro Dienes Derived Boranes for Asymmetric Hydrosilylation of Ketones[J]. Chinese Journal of Organic Chemistry, ;2019, 39(8): 2257-2263. doi: 10.6023/cjoc201903076 shu

Chiral Spiro Dienes Derived Boranes for Asymmetric Hydrosilylation of Ketones

  • Corresponding author: Feng Xiangqing, fxq@iccas.ac.cn Du Haifeng, haifengdu@iccas.ac.cn
  • Received Date: 30 March 2019
    Revised Date: 24 April 2019
    Available Online: 10 August 2019

    Fund Project: the National Natural Science Foundation of China 21825108Project supported by the National Natural Science Foundation of China (No. 21825108)

Figures(5)

  • The chemistry of frustrated Lewis pairs (FLPs) is among the challenging frontiers of synthetic chemistry, which provides a powerful approach for metal-free catalytic hyrogenations and Piers-type hydrosilylations. In recent years, a significant progress has been made in this field. However, the deveopment of asymmetric reactions is still sluggish. The lacks of highly effective and enantioselective chiral FLP catalysts represent the key issue. C2-symmetric 1, 1'-spirobiindane is one privileged framework in chiral ligands and catalysts. On the basis of chiral binaphthyl diene-derived frustrated Lewis pairs (FLPs) developed by our group, in this work, we designed and synthesized a novel class of chiral spiro dienes, which could further react with Piers' borane via the hydroboration reaction to generate chiral boranes in situ. With the combination of chiral borane and tri-tert-butylphosphine as an FLP catalyst, an asymmetric Piers-type hydrosilylation of simple ketones was successfully realized to give the desired secondary alcohols with up to 90% ee.
  • 加载中
    1. [1]

      Welch, G. C.; San Juan, R. R.; Masuda, J. D.; Stephan, D. W. Science 2006, 314, 1124.  doi: 10.1126/science.1134230

    2. [2]

      (a) Stephan, D. W. Org. Biomol. Chem. 2008, 6, 1535.
      (b) Kenward, A. L.; Piers, W. E. Angew. Chem., Int. Ed. 2008, 47, 38.
      (c) Stephan, D. W.; Erker, G. Angew. Chem., Int. Ed. 2010, 49, 46.
      (d) Soös, T. Pure Appl. Chem. 2011, 83, 667.
      (e) Erker, G. Pure Appl. Chem. 2012, 84, 2203.
      (f) Stephan, D. W. Org. Biomol. Chem. 2012, 10, 5740.
      (g) Paradies, J. Angew. Chem., Int. Ed. 2014, 53, 3552.
      (h) Stephan, D. W. Acc. Chem. Res. 2015, 48, 306.
      (i) Stephan, D. W.; Erker, G. Angew. Chem., Int. Ed. 2015, 54, 6400.
      (j) Oestreich, M.; Hermeke, J.; Mohr, J. Chem. Soc. Rev. 2015, 44, 2202.
      (k) Stephan, D. W. Science 2016, 354, aaf7229.

    3. [3]

      (a) Liu, Y.; Du, H. Acta Chim. Sinica 2014, 72, 771(in Chinese).
      (刘勇兵, 杜海峰, 化学学报, 2014, 72, 771.)
      (b) Feng, X.; Du, H. Tetrahedron Lett. 2014, 55, 6959.
      (c) Shi, L.; Zhou, Y.-G. ChemCatChem 2015, 7, 54.
      (d) Meng, W.; Feng, X.; Du, H. Acc. Chem. Res. 2018, 51, 191.

    4. [4]

      (a) Sumerin, V.; Chernichenko, K.; Nieger, M.; Leskelä, M.; Rieger, B.; Repo, T. Adv. Synth. Catal. 2011, 353, 2093.
      (b) Mewald, M.; Fröhlich, R.; Oestreich, M. Chem.-Eur. J. 2011, 17, 9406.
      (c) Mewald, M.; Oestreich, M. Chem.-Eur. J. 2012, 18, 14079.
      (d) Lindqvist, M.; Borre, K.; Axenov, K.; Kótai, B.; Nieger, M.; Leskelä, M.; Pápai, I.; Repo, T. J. Am. Chem. Soc. 2015, 137, 4038.
      (e) Süsse, L.; Hermeke, J.; Oestreich, M. J. Am. Chem. Soc. 2016, 138, 6940.
      (f) Lam, J.; Günther, B. A. R.; Farrell, J. M.; Eisenberger, P.; Bestvater, B. P.; Newman, P. D.; Melen, R. L.; Crudden, C. M.; Stephan, D. W. Dalton Trans. 2016, 45, 15303.

    5. [5]

      (a) Chen, D.; Wang, Y.; Klankermayer, J. Angew. Chem., Int. Ed. 2010, 49, 9475.
      (b) Chen, D.; Leich, V.; Pan, F.; Klankermayer, J. Chem.-Eur. J. 2012, 18, 5184.
      (c) Ghattas, G.; Chen, D.; Pan, F.; Klankermayer, J. Dalton Trans. 2012, 41, 9026.
      (d) Ye, K.-Y.; Wang, X.; Daniliuc, C. G.; Kehr, G.; Erker, G. Eur. J. Inorg. Chem. 2017, 368.
      (e) Chen, D.; Klankermayer, J. Chem. Commun. 2008, 2130.

    6. [6]

      (a) Parks, D. J.; Spence, R. E. von H.; Piers, W. E. Angew. Chem., Int. Ed. 1995, 34, 809.
      (b) Parks, D. J.; Piers, W. E.; Yap, G. P. A. Organometallics 1998, 17, 5492.

    7. [7]

      (a) Liu, Y.; Du, H. J. Am. Chem. Soc. 2013, 135, 12968.
      (b) Wei, S.; Du, H. J. Am. Chem. Soc. 2014, 136, 12261.
      (c) Zhang, Z.; Du, H. Angew. Chem., Int. Ed. 2015, 54, 623.
      (d) Ren, X.; Du, H. J. Am. Chem. Soc. 2016, 138, 810.
      (e) Liu, X.; Wang, Q.; Han, C.; Feng, X.; Du, H. Chin. J. Chem. 2019, 37, 663.

    8. [8]

      (a) Tu, X.-S.; Zeng, N.-N.; Li, R.-Y.; Zhao, Y.-Q.; Xie, D.-Z.; Peng Q.; Wang, X.-C. Angew. Chem., Int. Ed. 2018, 57, 15096.
      (b) Li, X.; Tian, J.-J.; Liu, N.; Tu, X.-S.; Zeng, N.-N.; Wang, X.-C. Angew. Chem., Int. Ed. 2019, 58, 4664.

    9. [9]

      Zhou, Q.-L., Privileged Chiral Ligands and Catalysts, Wiley-VCH, Weinheim, Germany, 2011.

    10. [10]

      For selected reviews, see: (a) Xie, J.-H.; Zhou, Q.-L. Acc. Chem. Res. 2008, 41, 581.
      (b) Ding, K.-L.; Han, Z.-B.; Wang, Z. Chem. Asian J. 2009, 4, 32.
      (c) Xie, J.-H.; Zhou, Q.-L. Acta Chim. Sinica 2014, 72, 778(in Chinese).
      (谢建华, 周其林, 化学学报, 2014, 72, 778.)
      (d) Xie, J.-H.; Bao, D.-H.; Zhou, Q.-L. Synthesis 2015, 47, 460.
      (d) Zhu, S.-F.; Zhou, Q.-L. Acc. Chem. Res. 2012, 45, 1365.

    11. [11]

      For a pioneering work, see: Parks, D. J.; Piers, W. E. J. Am. Chem. Soc. 1996, 118, 9440.

    12. [12]

      Rendler, S.; Oestreich, M. Angew. Chem., Int. Ed. 2008, 47, 5997.  doi: 10.1002/anie.200801675

    13. [13]

      Zhu, S.-F.; Yang, Y.; Wang, L.-X.; Liu, B.; Zhou, Q.-L. Org. Lett. 2005, 7, 2333.  doi: 10.1021/ol050556x

    14. [14]

      Zheng, J.; Cui, W.-J.; Zheng, C.; You, S.-L. J. Am. Chem. Soc. 2016, 138, 5242.  doi: 10.1021/jacs.6b02302

    15. [15]

      For details, see the Supporting Information. CCDC 1905630 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

    16. [16]

      (a) Sokeirik, Y. S.; Mori, H.; Omote, M; Sato, K.; Tarui, A.; Kumadaki, I.; Ando, A. Org. Lett. 2007, 9, 1927.
      (b) Wu, W.; Liu, S.; Duan, M.; Tan, X.; Chen, C.; Xie, Y.; Lan, Y.; Dong, X.; Zhang, X. Org. Lett. 2016, 18, 2938.
      (c) Ren, X.; Li, G.; Wei, S.; Du, H. Org. Lett. 2015, 17, 990.
      (d) Zhang, Z.; Jain, P.; Antilla, J. C. Angew. Chem., Int. Ed. 2011, 50, 10961.
      (e) Süsse, L.; Hermeke, J.; Oestreich, M. J. Am. Chem. Soc. 2016, 138, 6940.
      (f) Chen, X.; Lu, Z. Org. Lett. 2016, 18, 4658.

  • 加载中
    1. [1]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

    2. [2]

      Jieshuai XiaoYuan ZhengYue ZhaoZhuangzhi ShiMinyan Wang . Asymmetric Nozaki-Hiyama-Kishi (NHK)-type reaction of isatins with aromatic iodides by cobalt catalysis. Chinese Chemical Letters, 2025, 36(5): 110243-. doi: 10.1016/j.cclet.2024.110243

    3. [3]

      Mianfeng LiHaozhi WangZijun YangZexiang YinYuan LiuYingmei BianYang WangXuerong ZhengYida Deng . Synergistic enhancement of alkaline hydrogen evolution reaction by role of Ni-Fe LDH introducing frustrated Lewis pairs via vacancy-engineered. Chinese Chemical Letters, 2025, 36(3): 110199-. doi: 10.1016/j.cclet.2024.110199

    4. [4]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    5. [5]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    6. [6]

      Ruixue LiuXiaobing DingQiwei LangGen-Qiang ChenXumu Zhang . Enantioselective and divergent construction of chiral amino alcohols and oxazolidin-2-ones via Ir-f-phamidol-catalyzed dynamic kinetic asymmetric hydrogenation. Chinese Chemical Letters, 2025, 36(3): 110037-. doi: 10.1016/j.cclet.2024.110037

    7. [7]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    8. [8]

      Yanxin JiangKwai Wun ChengZhiping YangJun (Joelle) Wang . Pd-catalyzed enantioselective and regioselective asymmetric hydrophosphorylation and hydrophosphinylation of enynes. Chinese Chemical Letters, 2025, 36(5): 110231-. doi: 10.1016/j.cclet.2024.110231

    9. [9]

      Yu-Hang MiaoZheng-Xu ZhangXu-Yi HuangYuan-Zhao HuaShi-Kun JiaXiao XiaoMin-Can WangLi-Ping XuGuang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830

    10. [10]

      Chao ChenWenwen YuGuangen HuangXuelian RenXiangli ChenYixin LiShenggui LiangMengmeng XuMingyue ZhengYaxi YangHe HuangWei TangBing Zhou . Asymmetric macrocyclization enabled by Rh(Ⅲ)-catalyzed CH activation: Enantioenriched macrocyclic inhibitor of Zika virus infection. Chinese Chemical Letters, 2024, 35(11): 109574-. doi: 10.1016/j.cclet.2024.109574

    11. [11]

      Xiang HuangDongzhen XuYang LiuXia HuangYangfan WuDongmei FangBing XiaWei JiaoJian LiaoMin Wang . Asymmetric synthesis of difluorinated α-quaternary amino acids (DFAAs) via Cu-catalyzed difluorobenzylation of aldimine esters. Chinese Chemical Letters, 2024, 35(12): 109665-. doi: 10.1016/j.cclet.2024.109665

    12. [12]

      Guang XuCuiju ZhuXiang LiKexin ZhuHao Xu . Copper-catalyzed asymmetric [4+1] annulation of yne–allylic esters with pyrazolones. Chinese Chemical Letters, 2025, 36(4): 110114-. doi: 10.1016/j.cclet.2024.110114

    13. [13]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    14. [14]

      Zhirong YangShan WangMing JiangGengchen LiLong LiFangzhi PengZhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518

    15. [15]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    16. [16]

      Jingyu ChenSha WuYuhao WangJiong Zhou . Near-perfect separation of alicyclic ketones and alicyclic alcohols by nonporous adaptive crystals of perethylated pillar[5]arene and pillar[6]arene. Chinese Chemical Letters, 2025, 36(4): 110102-. doi: 10.1016/j.cclet.2024.110102

    17. [17]

      Ke ZhangSheng ZuoPengyuan YouTong RuFen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157

    18. [18]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    19. [19]

      Yi-Fan WangHao-Yun YuHao XuYa-Jie WangXiaodi YangYu-Hui WangPing TianGuo-Qiang Lin . Rhodium(Ⅲ)-catalyzed diastereo- and enantioselective hydrosilylation/cyclization reaction of cyclohexadienone-tethered α, β-unsaturated aldehydes. Chinese Chemical Letters, 2024, 35(9): 109520-. doi: 10.1016/j.cclet.2024.109520

    20. [20]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

Metrics
  • PDF Downloads(5)
  • Abstract views(978)
  • HTML views(182)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return