Citation: Cheng Cheng, Sun Xiaobin, Miao Zhiwei. Progress in Synthesis of Eight-Membered Cyclic Ethers[J]. Chinese Journal of Organic Chemistry, ;2019, 39(8): 2148-2156. doi: 10.6023/cjoc201903068 shu

Progress in Synthesis of Eight-Membered Cyclic Ethers

  • Corresponding author: Miao Zhiwei, miaozhiwei@nankai.edu.cn
  • Received Date: 28 March 2019
    Revised Date: 29 April 2019
    Available Online: 15 August 2019

    Fund Project: Project supported by the National Key Research and Development Program of China 2016YFD0201200Project supported by the National Key Research and Development Program of China (No. 2016YFD0201200) and the Fundamental Research Funds for the Central Universities, Nankai University (No. 63191205)the Fundamental Research Funds for the Central Universities, Nankai University 63191205

Figures(21)

  • Eight membered cyclic ether compounds are common structural motifs in natural products and bioactive molecules. The efficient synthesis of eight membered ethers has attracted wide attention for organic chemists. Compared with five-to seven-membered cyclic ethers, the synthesis of eight membered cyclic ethers is more challenging. In this paper, the synthetic methods for eight membered cyclic ethers by transition metal catalysis, ring expansion, retro-Claisen rearrangement, ring-closing metathesis, intramolecular amide enol alkylation and organic catalyzed tandem cyclization are reviewed.
  • 加载中
    1. [1]

      Zhou, Z. F.; Menna, M.; Cai, Y. S.; Guo, Y. W. Chem. Rev. 2014, 115, 1543.
       

    2. [2]

      (a) Gonzaĺez, A. G.; Martín, J. D.; Martín, V. S.; Norte, M.; Peŕez, R.; Ruano, J. Z.; Drexler, S. A.; Clardy, J. Tetrahedron 1982, 38, 1009.
      (b) Noite, M.; Gonzalez, A. G.; Cataldo, F.; Rodríguez, M. L.; Brito, I. Tetrahedron 1991, 47, 9411.
      (c) Kim, H.; Choi, W. J.; Jung, J.; Kim, S.; Kim, D. J. Am. Chem. Soc. 2003, 125, 10238.

    3. [3]

      (a) Irie, T.; Suzuki, M.; Masamune, T. Tetrahedron Lett. 1965, 6, 1091.
      (b) Irie, T.; Suzuki, M.; Masamune, T. Tetrahedron 1968, 24, 4193.
      (c) Crimmins, M. T.; Choy, A. L. J. Am. Chem. Soc. 1999, 121, 5653.
      (c) Irie, T.; Suzuki, M.; Masamune, T. Tetrahedron Lett. 1965, 6, 109.

    4. [4]

      Fukuzawa, A.; Takasugi, Y.; Murai, A. Tetrahedron Lett. 1991, 32, 5597.  doi: 10.1016/0040-4039(91)80093-L

    5. [5]

      Suzuki, M.; Takahashi, Y.; Matsuo, Y.; Masuda, M. Phytochemistry 1996, 41, 1101.  doi: 10.1016/0031-9422(95)00726-1

    6. [6]

      (a) Singh, S. B.; Zink, D. L.; Quamina, D. S.; Pelaez, F.; Teran, A.; Felock, P.; Hazuda, D. J. Tetrahedron Lett. 2002, 43, 2351.
      (b) Ramana, C. V.; Reddy, C. N.; Gonnade, R. G. Chem. Commun. 2008, 3151.
      (c) Tadross, P. M.; Bugga, P.; Stoltz, B. M. Org. Biomol. Chem. 2011, 9, 5354.
      (d) Foot, J. S.; Giblin, G. M. P.; Taylor, R. J. K. Org. Lett. 2003, 5, 4441.

    7. [7]

      (a) Macías, F. A.; Varela, R. M.; Torres, A.; Molinillo, J. M. G.; Fronczek, F. R. Tetrahedron Lett. 1993, 34, 1999.
      (b) Macías, F. A.; Molinillo, J. M. G.; Varela, R. M.; Torres, A.; Fronczek, F. R. J. Org. Chem. 1994, 59, 8261.
      (c) Macías, F. A.; Varela, R. M.; Torres, A.; Molinillo, J. M. G. J. Nat. Prod. 1999, 62, 1636.

    8. [8]

      (a) Burton, J. W.; Clark, J. S.; Derrer, S.; Stork, T. C.; Bendall, J. G.; Holmes, A. B. J. Am. Chem. Soc. 1997, 119, 7483.
      (b) Tsushima, K.; Murai, A. Tetrahedron Lett. 1992, 33, 4345.
      (c) Bratz, M.; Bullock, W. H.; Overman, L. E.; Takemoto, T. J. Am. Chem. Soc. 1995, 117, 5958.
      (d) Mujica, M. T.; Afonso, M. M.; Galindo, A.; Palenzuela, J. A. Synlett 1996, 983.
      (e) Krüger, J.; Hoffmann, R. W. J. Am. Chem. Soc. 1997, 119, 7499.
      (f) Mujica, M. T.; Afonso, M. M.; Galindo, A.; Palenzuela, J. A. J. Org. Chem. 1998, 63, 9728.

    9. [9]

      Mandal, S. K.; Roy, S. C. Tetrahedron Lett. 2006, 47, 1599.  doi: 10.1016/j.tetlet.2005.12.131

    10. [10]

      Coulter, M. M.; Dornan, P. K.; Dong, V. M. J. Am. Chem. Soc. 2009, 131, 6932.  doi: 10.1021/ja901915u

    11. [11]

      Zhao, C. G.; Xie, X. G.; Duan, S. S.; Li, H. L.; Fang, R.; She, X. G. Angew. Chem., Int. Ed. 2014, 53, 10789.  doi: 10.1002/anie.201406486

    12. [12]

      Corrie, T. J. A.; Ball, L. T.; Russell, C. A.; Lloyd-Jones, G. C. J. Am. Chem. Soc. 2017, 139, 245.  doi: 10.1021/jacs.6b10018

    13. [13]

      Liu, R. X.; Wang, Q.; Wei, Y.; Shi, M. Chem. Commun. 2018, 54, 1225.  doi: 10.1039/C7CC09250D

    14. [14]

      Snyder, S. A.; Treitler, D. S.; Brucks, A. P.; Sattler, W. J. Am. Chem. Soc. 2011, 133, 15898.  doi: 10.1021/ja2069449

    15. [15]

      Liao, H. H.; Liu, R. S. Chem. Commun. 2011, 47, 1339.  doi: 10.1039/C0CC03309J

    16. [16]

      Cao, T. X.; Kong, Y.; Luo, K.; Chen, L. F.; Zhu, S. F. Angew. Chem., Int. Ed. 2018, 57, 8707.
       

    17. [17]

      Boeckman, R. K.; Shair, M. D.; Vargas, J. R.; Stolz. L. A. J. Org. Chem. 1993, 58, 1295.  doi: 10.1021/jo00058a001

    18. [18]

      Boeckman, R. K.; Reeder, M. R. J. Org. Chem. 1997, 62, 6456.  doi: 10.1021/jo9712254

    19. [19]

      Boeckman, R. K.; Zhang, J.; Reeder, M. R. Org. Lett. 2002, 4, 3891.  doi: 10.1021/ol0267174

    20. [20]

      Li, Z. B.; Wang, F. P.; Chen, D. L. Chin. J. Org. Chem. 2000, 20, 282(in Chinese).  doi: 10.3321/j.issn:0253-2786.2000.03.002
       

    21. [21]

      Miller, S. J.; Kim, S. H.; Chen, Z. R.; Grubbs, R. H. J. Am. Chem. Soc. 1995, 117, 2108.  doi: 10.1021/ja00112a031

    22. [22]

      Linderman, R. J.; Siedlecki, J.; ONeill, S. A.; Sun, H. J. Am. Chem. Soc. 1997, 119, 6919.  doi: 10.1021/ja9711674

    23. [23]

      Crimmins, M. T.; Tabet, E. A. J. Am. Chem. Soc. 2000, 122, 5473.  doi: 10.1021/ja0007197

    24. [24]

      Mori, M.; Kitamura, T.; Sakakibara, N.; Sato, Y. Org. Lett. 2000, 2, 543.  doi: 10.1021/ol991398a

    25. [25]

      Ortega, N.; Martin, T.; Martin, V. S. Org. Lett. 2006, 8, 871.  doi: 10.1021/ol052932j

    26. [26]

      Baek, S.; Jo, H.; Kim, H.; Kim, H.; Kim, S.; Kim, D. Org. Lett. 2005, 7, 75.  doi: 10.1021/ol047877d

    27. [27]

      Kim, G.; Sohn, T.; Kim, D.; Paton. R. S. Angew. Chem., Int. Ed. 2014, 53, 272.  doi: 10.1002/anie.201308077

    28. [28]

      Liang, L.; Li, E. Q.; Dong, X. L.; Huang, Y. Org. Lett. 2015, 17, 4914.  doi: 10.1021/acs.orglett.5b02498

    29. [29]

      Cheng, C.; Zhang, J. Y.; Wang, X.; Miao, Z. W. J. Org. Chem. 2018, 83, 5450.  doi: 10.1021/acs.joc.8b00352

  • 加载中
    1. [1]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    2. [2]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    3. [3]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    4. [4]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    5. [5]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    6. [6]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    7. [7]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    8. [8]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    9. [9]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    10. [10]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    11. [11]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    12. [12]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    13. [13]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    14. [14]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    15. [15]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    16. [16]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    17. [17]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    18. [18]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    19. [19]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    20. [20]

      Ying Xiong Guangao Yu Lin Wu Qingwen Liu Houjin Li Shuanglian Cai Zhanxiang Liu Xingwen Sun Yuan Zheng Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Determination of Physical Constants of Organic Compounds. University Chemistry, 2025, 40(5): 106-121. doi: 10.12461/PKU.DXHX202503079

Metrics
  • PDF Downloads(33)
  • Abstract views(1678)
  • HTML views(392)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return