Citation: Shi Chonghui, Xiao Benxian, Du Wei, Chen Yingchun. Phosphine-Catalyzed Formal[6+2] Cycloadditions of α'-Methylene 2-Cyclopentenones[J]. Chinese Journal of Organic Chemistry, ;2019, 39(8): 2218-2225. doi: 10.6023/cjoc201903061 shu

Phosphine-Catalyzed Formal[6+2] Cycloadditions of α'-Methylene 2-Cyclopentenones

  • Corresponding author: Chen Yingchun, ycchen@scu.edu.cn
  • Received Date: 27 March 2019
    Revised Date: 29 April 2019
    Available Online: 21 August 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21572135)the National Natural Science Foundation of China 21572135

Figures(3)

  • The formal[6+2] cycloaddition reaction of α'-methylene-2-cyclopentenones and 2-alkylidene-1, 3-indanediones was developed under the catalysis of tricyclohexyl phosphine, proceeding in a remote γ-regioselective Rauhut-Currier-type reaction followed by a β'-regioselective intramolecular Michael addition process. An array of fused bicyclic frameworks incorperating a spiro-1, 3-indanedione motif were produced in fair to good yields of 48%~76% with excellent diastereoseletivity (generally>19:1 dr). This protocol expands the reaction mode of traditional Rauhut-Currier reaction, which might find further application in organic synthesis.
  • 加载中
    1. [1]

      (a) Moyano, A.; Rios, R. Chem. Rev. 2011, 111, 4703.
      (b) Volla, C. M. R.; Atodiresei, I.; Rueping, M. Chem. Rev. 2014, 114, 2390.
      (c) Ishihara, K.; Nakano, K. J. Am. Chem. Soc. 2007, 129, 8930.
      (d) Davis, R. L.; Jø rgensen, K. A. J. Am. Chem. Soc. 2012, 134, 2543.
      (e) Talavera, G.; Reyes, E.; Vicario, J. L.; Carrillo, L. Angew. Chem., Int. Ed. 2012, 51, 4104.
      (f) Akula, P. S.; Hong, B.-C.; Lee, G.-H. Org. Lett. 2018, 20, 7835.
      (g) Lou, Y.-P.; Zheng, C.-W.; Pan, R.-M.; Jin, Q.-W.; Zhao, G.; Li, Z. Org. Lett. 2015, 17, 688.
      (h) Yuan, Z.; Wei, W.; Lin, A.; Yao, H. Org. Lett. 2016, 18, 3370.
      (i) Sun, X. -X.; Li, C.; He, Y.-Y.; Zhu, Z.-Q.; Mei, G.-J.; Shi, F. Adv. Synth. Catal. 2017, 359, 2660.
      (j) Yang, S.; Lu, D.-F.; Huo, H.-R.; Luo, F.; Gong, Y.-F. Org. Lett. 2018, 20, 6943.
      (k) Huo, H.-R.; A, R.-N.; Gong, Y.-F. J. Org. Chem. 2019, 84, 2093.
      (l) Yao, W.; Dou, X.; Lu, Y. J. Am. Chem. Soc. 2015, 137, 54.
      (m) Zhou, R.; Xiao, W.; Yin, X.; Chen, Y.-C. Acta Chim. Sinica 2014, 72, 862(in Chinese).
      (周容, 肖微, 尹祥, 陈应春, 化学学报, 2014, 72, 862.)

    2. [2]

      (a) Wu, T.-C.; Houk, K. N. J. Am. Chem. Soc. 1985, 107, 5308.
      (b) Hong, B.-C.; Shr, Y.-J.; Wu, J.-L.; Gupta, A. K.; Lin, K.-J. Org. Lett. 2002, 4, 2249.
      (c) Hayashi, Y.; Gotoh, H.; Honma, M.; Sankar, K.; Kumar, I.; Ishikawa, H.; Konno, K.; Yui, H.; Tsuzuki, S.; Uchimaru, T. J. Am. Chem. Soc. 2011, 133, 20175.
      (d) Bertuzzi, G.; Thø gersen, M. K.; Giardinetti, M.; Vidal-Albalat, A.; Simon, A.; Houk, K. N.; Jø rgensen, K. A. J. Am. Chem. Soc. 2019, 141, 3288.

    3. [3]

      Zhou, Z.; Wang, Z.-X.; Zhou, Y.-C.; Xiao, W.; Ouyang, Q.; Du, W.; Chen, Y.-C. Nat. Chem. 2017, 9, 590.  doi: 10.1038/nchem.2698

    4. [4]

      (a) Carrie, E. A.; Alpay, D.; Scott, J. M. Tetrahedron 2009, 65, 4069.
      (b) Kishor C. B. RSC Adv. 2015, 5, 75923.
      (c) Xie, P.-Z.; Huang, Y. Eur. J. Org. Chem. 2013, 6213.
      (d) Ni, H.-Z.; Chan, W.-L.; Lu. Y.-X. Chem. Rev. 2018, 118, 9344.
      (e) Fan, Y.-C.; Ohyun K. Chem. Commun. 2013, 49, 11588.
      (f) Methot, J. L.; Roush, W. R. Adv. Synth. Catal. 2004, 346, 1035.
      (g) Gong, J.-J.; Li, T.-Z.; Pan, K.; Wu, X.-Y. Chem. Commun. 2011, 47, 1491.
      (h) Takizawa, S.; Nguyen, T. M.; Grossmann, A.; Enders, D.; Sasai, H. Angew. Chem., Int. Ed. 2012, 51, 5423.
      (i) Su, X.; Zhou, W.; Li, Y.-Y.; Zhang, J.-L. Angew. Chem., Int. Ed. 2015, 54, 6874.
      (j) Zhang, X.-Z.; Gan, K.-J.; Liu, X.-X.; Deng, Y.-H.; Wang, F.-X.; Yu, K.-Y.; Zhang, J.; Fan, C.-A. Org. Lett. 2017, 19, 3207.
      (k) Jin, Z.; Yang, R.; Du, Y.; Tivari, B.; Ganguly, R.; Chi, Y. R. Org. Lett. 2012, 14, 3226.
      (l) Shi, Z.; Yu, P.; Loh, T. P.; Zhong, G.-F. Angew. Chem., Int. Ed. 2012, 51, 7825.
      (m) Dong, X.; Liang, L.; Li, E.; Huang, Y. Angew. Chem., Int. Ed. 2015, 54, 1621.
      (n) Zhou, W.; Su, X.; Tao, M.; Zhu, C.; Zhao, Q.; Zhang, J.-L. Angew. Chem., Int. Ed. 2015, 54, 14853.
      (o) Li, S.; Liu, Y.; Huang, B.; Zhou, T.; Tao, H.; Xiao, Y.; Liu, L.; Zhang, J.-L. ACS Catal. 2017, 7, 2805.
      (p) Qin, C.; Liu, Y.; Yu, Y.; Fu, Y.; Li, H.; Wang, W. Org. Lett. 2018, 20, 1304.
      (q) Wu, X.; Zhou L.; Maiti, R.; Mou, C.; Pan, L.; Chi, Y. R. Angew. Chem., Int. Ed. 2019, 58, 477.
      (r) Zhou, W.; Gao, L.-H.; Tao, M.-N.; Su, X.; Zhao, Q.-J.; Zhang, J.-L. Acta Chim. Sinica 2016, 74, 800(in Chinese).
      (周伟, 高利华, 陶梦娜, 张俊良, 化学学报, 2016, 74, 800.)

    5. [5]

      McDougal, N. T.; Schaus, S. E. Angew. Chem., Int. Ed. 2006, 45, 3117.  doi: 10.1002/anie.200600126

    6. [6]

      (a) Gu, J.; Xiao, B.-X.; Chen, Y.-R.; Li, Q.-Z.; Ouyang, Q.; Du, W.; Chen, Y.-C. Org. Lett. 2018, 20, 2088.
      (b) Gu, J.; Xiao, B.-X.; Ouyang, Q.; Du, W.; Chen, Y.-C. Chin. J. Chem. 2019, 37, 155.

    7. [7]

      Thalji, R. K.; Roush, W. R. J. Am. Chem. Soc. 2005, 127, 16778.  doi: 10.1021/ja054085l

    8. [8]

      (a) Johnston, C. P.; Kothari, A.; Sergeieva, T.; Okovytyy, S. I.; Jackson, K. E.; Paton, R. S.; Smith, M. D. Nat. Chem. 2015, 7, 171.
      (b) Chatgilialoglu, C.; Ferreri, C.; Guerra, M.; Timokhin, V.; Froudakis, G.; Gimisis, T. J. Am. Chem. Soc. 2002, 124, 10765.
      (c) Caldwell, J. J.; Craig, D. Angew. Chem., Int. Ed. 2007, 46, 2631.
      (d) Auvray, P.; Knochel, P.; Normant, J. F. Tetrahedron Lett. 1985, 26, 4455.

    9. [9]

      (a) Brenninger, C.; Pöthig, A.; Bach, T. Angew. Chem., Int. Ed. 2017, 56, 4337.
      (b) Wenkert, E.; Schorp, M. K. J. Org. Chem. 1994, 59, 1943.
      (c) Fu, X.; Zhang, S.; Yin, J.; McAllister, T. L.; Jiang, S. A.; Tann, C.-H.; Thiruvengadam, T. K.; Zhang, F. Tetrahedron Lett. 2002, 43, 573.
      (d) Bugarin, A.; Jones, K. D.; Connell, B. T. Chem. Commun. 2010, 46, 1715.

    10. [10]

      (a) Lee, C.-J.; Sheu, C.-C; Tasi, C.-C.; Wu, Z.-Z.; Lin, W. Chem. Commun. 2014, 50, 5304.
      (b) Hassanein, A. Z. Synth. Commun. 2000, 30, 3883.

  • 加载中
    1. [1]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    2. [2]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    3. [3]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    4. [4]

      Zhao GuYunhui YangSong YeCongyang Wang . 2,3-Arylacylation of allenes through synergetic catalysis of palladium and N-heterocyclic carbene. Chinese Chemical Letters, 2025, 36(5): 110334-. doi: 10.1016/j.cclet.2024.110334

    5. [5]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    6. [6]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    7. [7]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    8. [8]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    9. [9]

      Xuling PanWei CaiYou Huang . Recent advances in phosphine-mediated sequential annulations. Chinese Chemical Letters, 2025, 36(5): 110628-. doi: 10.1016/j.cclet.2024.110628

    10. [10]

      Jieshuai XiaoYuan ZhengYue ZhaoZhuangzhi ShiMinyan Wang . Asymmetric Nozaki-Hiyama-Kishi (NHK)-type reaction of isatins with aromatic iodides by cobalt catalysis. Chinese Chemical Letters, 2025, 36(5): 110243-. doi: 10.1016/j.cclet.2024.110243

    11. [11]

      Shengwen GuanZhaotong WeiNingxu HanYude WeiBin XuMing WangJunjuan Shi . Construction of metallo-complexes with 2,2′:6′,2″-terpyridine substituted triphenylamine in different modified positions and their photophysical properties. Chinese Chemical Letters, 2024, 35(7): 109348-. doi: 10.1016/j.cclet.2023.109348

    12. [12]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

    13. [13]

      Xin Wang Changzhao Chen Qishen Wang Kai Dai . Graphene quantum dot modified Bi2MoO6 nanoflower for efficient degradation of BPA under visible light. Chinese Journal of Structural Chemistry, 2024, 43(12): 100473-100473. doi: 10.1016/j.cjsc.2024.100473

    14. [14]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    15. [15]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    16. [16]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    17. [17]

      Shuai Liu Wen Wu Peili Zhang Yunxuan Ding Chang Liu Yu Shan Ke Fan Fusheng Li . Mechanistic insights into acidic water oxidation by Mn(2,2′-bipyridine-6,6′-dicarboxylate)-based hydrogen-bonded organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100535-100535. doi: 10.1016/j.cjsc.2025.100535

    18. [18]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    19. [19]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    20. [20]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

Metrics
  • PDF Downloads(5)
  • Abstract views(728)
  • HTML views(99)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return