Citation: Shen Xianfu, Peng Tianfeng, Zhou Yongyun, Xi Yongkai, Zhao Jingfeng, Yang Xiaodong, Zhang Hongbin. Progress in Total Syntheses of Dimeric Cyclotryptamine Alkaloids[J]. Chinese Journal of Organic Chemistry, ;2019, 39(10): 2685-2704. doi: 10.6023/cjoc201903058 shu

Progress in Total Syntheses of Dimeric Cyclotryptamine Alkaloids

  • Corresponding author: Zhang Hongbin, zhanghb@ynu.edu.cn
  • Received Date: 26 March 2019
    Revised Date: 18 April 2019
    Available Online: 10 October 2019

    Fund Project: the National Natural Science Foundation of China 2152197the Qujing Normal University 2018QN002the National Natural Science Foundation of China 21861032the Natural Science Foundation of Yunnan Province 2018FD078the Natural Science Foundation of Yunnan Province 2017FH001-020Project supported by the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT17R94), the National Natural Science Foundation of China (Nos. 2152197, 21861032), the Natural Science Foundation of Yunnan Province (Nos. 2018FD078, 2017FH001-020) and the Qujing Normal University (No. 2018QN002)the Program for Changjiang Scholars and Innovative Research Team in University IRT17R94

Figures(29)

  • As interesting synthetic targets, dimeric cyclotryptamine alkaloids bearing sterically hindered vicinal all-carbon quaternary stereocenters have attracted significant attention from the synthetic community. Stereocontrolled synthesis of the congested all-carbon quaternary stereocenters in these alkaloids presents a formidable challenge. This review summarizes the synthetic efforts towards dimeric cyclotryptamine alkaloids in the last twelve years.
  • 加载中
    1. [1]

      For selected review, see:
      (a) Crich, D.; Banerjee, A. Acc. Chem. Res. 2007, 40, 151.
      (b) Ruiz-Sanchis, P.; Savina, S. A.; Albericio, F.; Álvarez, M. Chem. Eur. J. 2011, 17, 1388.
      (c) Repka, L. M.; Reisman, S. E. J. Org. Chem. 2013, 78, 12314.
      (d) Kim, J.; Movassaghi, M. Acc. Chem. Res. 2015, 48, 115.
      (e) Liang, K. J.; Xia, C. F. Chin. J. Chem. 2017, 35, 255.

    2. [2]

      (a) Popp, J. L.; Musza, L. L.; Barrow, C. J.; Rudewicz, P. J.; Houck, D. R. J. Antibiot. 1994, 47, 411.
      (b) Oleynek, J. J.; Sedlock, D. M.; Barrow, C. J.; Appell, K. C.; Casiano, F.; Haycock, D.; Ward, S. J.; Kaplita, P.; Gillum, A. M. J. Antibiot. 1994, 47, 399.
      (c) Sedlock, D. M.; Barrow, C. J.; Brownell, J. E.; Hong, A.; Gillum, A. M.; Houck, P. R. J. Antibiot. 1994, 47, 391.

    3. [3]

      Greiner, D.; Bonaldi, T.; Eskeland, R.; Roemer, E.; Imhof, A. Nat. Chem. Biol. 2005, 1, 143.  doi: 10.1038/nchembio721

    4. [4]

      Steven, A.; Overman, L. E. Angew. Chem. Int. Ed. 2007, 46, 5488.  doi: 10.1002/anie.200700612

    5. [5]

      Schmidt, M. A.; Movassaghi, M. Synlett 2008, 313.

    6. [6]

      Woodward, R. B.; Yang, N. C.; Katz, T. J.; Clark, V. M.; Harley-Mason, J.; Ingleby, R. F. J.; Sheppard, N. Proc. Chem. Soc. 1960, 76.

    7. [7]

      Robinson, R.; Teuber, H. J. Chem. Ind. 1954, 783.

    8. [8]

      Kirby, G. W.; Shah, S. W.; Herbert, E. J. J. Chem. Soc. C 1969, 1916.

    9. [9]

      Steven, A.; Overman, L. E. Angew. Chem. Int. Ed. 2007, 46, 5488.

    10. [10]

      Movassaghi, M., Schmidt, M. A. Angew. Chem. Int. Ed. 2007, 46, 3725.  doi: 10.1002/anie.200700705

    11. [11]

      Movassaghi, M.; Schmidt. M. A.; Ashenhurst, J. A. Angew. Chem. Int. Ed. 2008, 47, 1485.  doi: 10.1002/anie.200704960

    12. [12]

      (a) Pérez-Balado, C.; de Lera, Á. R. Org. Lett. 2008, 10, 3701.
      (b) Pérez-Balado, C.; Rodríguez-Graña, P.; de Lera, Á. R. Chem. Eur. J. 2009, 15, 9928.

    13. [13]

      Xie, W. Q.; Jiang, G. D.; Liu, H.; Hu, J. D.; Pan, X. X.; Zhang, H.; Wan, X. L.; Lai, Y. S.; Ma, D. W. Angew. Chem. Int. Ed. 2013, 52, 12924.  doi: 10.1002/anie.201306774

    14. [14]

      Peng, Y.; Luo, L.; Yan, C. S.; Zhang, J. J.; Wang, Y. W. J. Org. Chem. 2013, 78, 10960.  doi: 10.1021/jo401936v

    15. [15]

      Wada, M.; Murata, T.; Oikawa, H.; Oguri, H. Org. Biomol. Chem. 2014, 12, 298.  doi: 10.1039/C3OB41918E

    16. [16]

      Movassaghi. M.; Lathrop. S. P. Chem. Sci.2014, 5, 333.  doi: 10.1039/C3SC52451E

    17. [17]

      Li, Y. X.; Wang, H. X.; Ali, S.; Xia, X. F.; Liang, Y. M. Chem. Commun. 2012, 48, 2343  doi: 10.1039/c2cc16637b

    18. [18]

      Tadano, S.; Mukaeda, Y.; Ishikawa, H. Angew. Chem. Int. Ed. 2013, 52, 7990.  doi: 10.1002/anie.201303143

    19. [19]

      Sun, D. Q.; Xing, C. Y.; Wang, X. Q.; Su, Z. Q.; Li, C. Z. Org. Chem. Front. 2014, 1, 956.  doi: 10.1039/C4QO00165F

    20. [20]

      Ghosh, S.; Chaudhuri, S.; Bisai, A. Org. Lett. 2015, 17, 1373.

    21. [21]

      (a) Liang, K. J.; Deng, X.; Tong, X. G.; Li, D. S.; Ding, M.; Zhou, A. K.; Xia, C. F. Org. Lett. 2015, 17, 206.
      (b) Ding, M.; Liang, K. J.; Pan, R.; Zhang, H. B.; Xia, C. F. J. Org. Chem. 2015, 80, 10309.

    22. [22]

      (a) Shen, X. F.; Zhou, Y. Y.; Xi, Y. K.; Zhao, J. F.; Zhang, H. B. Chem. Commun. 2015, 51, 14873.
      (b) Shen, X. F.; Zhou, Y. Y.; Xi, Y. K.; Zhao, J. F.; Zhang, H. B. Nat. Prod. Bioprospect. 2016, 6, 117

    23. [23]

      Mitsunuma, H.; Shibasaki, M.; Kanai, M.; Matsunaga, S. Angew. Chem. Int. Ed. 2012, 51, 5217.  doi: 10.1002/anie.201201132

    24. [24]

      Guo, C.; Song, J.; Huang, J.-Z.; Chen, P.-H.; Luo, S.-W.; Gong, L.-Z. Angew. Chem. Int. Ed. 2012, 51, 1046.  doi: 10.1002/anie.201107079

    25. [25]

      Fang, C.-L.; Horne, S.; Taylor, N.; Rodrigo, R. J. Am. Chem. Soc. 1994, 116, 9480.  doi: 10.1021/ja00100a010

    26. [26]

      Liu, R. R.; Zhang, J. L. Org. Lett. 2013, 15, 2266.  doi: 10.1021/ol400845c

    27. [27]

      (a) Link, J. T.; Overman, L. E. J. Am. Chem. Soc.1996, 118, 8166.
      (b) Paone, D. V.; Overman, L. E. J. Am. Chem. Soc.2001, 123, 9465.

    28. [28]

      Trost, B. M.; Osipov, M. Angew. Chem. Int. Ed. 2013, 52, 9176.  doi: 10.1002/anie.201302805

    29. [29]

      (a) Ghosh, S.; Bhunia, S.; Kakde, B. N.; De, S.; Bisai, A. Chem. Commun. 2014, 50, 2434.
      (b) Ghosh, S.; Chaudhuri, S.; Bisai, A. Chem. Eur. J. 2015, 21, 17479.
      (c) Babu, K. N.; Kinthada, L. K.; Das, P. P.; Bisai, A. Chem. Commun. 2018, 54, 7963.
      (d) Babu, K. N.; Roy, A.; Singh, M.; Bisai, A. Org. Lett. 2018, 20, 6327.
      (e) Kinthada, L. K.; Medisetty, S. R.; Parida, A.; Babu, K. N.; Bisai, A. J. Org. Chem. 2017, 82, 8548.

    30. [30]

      Tang, X. D.; Li, S.; Guo, R.; Nie, J.; Ma, J. A. Org. Lett. 2015, 17, 1389.  doi: 10.1021/acs.orglett.5b00159

    31. [31]

      Chen, S.-K.; Ma, W.-Q.; Yan, Z.-B.; Zhang, F.-M.; Wang, S.-H.; Tu, Y.-Q.; Zhang, X.-M.; Tian, J.-M. J. Am. Chem. Soc.2018, 140, 10099.  doi: 10.1021/jacs.8b05386

    32. [32]

      Araki, T.; Manabe, Y.; Fujioka, K.; Yokoe, H.; Kanematsu, M.; Yoshida, M.; Shishido, K. Tetrahedron Lett. 2013, 54, 1012.  doi: 10.1016/j.tetlet.2012.12.057

    33. [33]

      Tayu, M.; Higuchi, K.; Ishizaki, T.; Kawasaki, T. Org. Lett. 2014, 16, 3613.  doi: 10.1021/ol5012373

  • 加载中
    1. [1]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    2. [2]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    3. [3]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    4. [4]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    5. [5]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    6. [6]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    7. [7]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    8. [8]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    9. [9]

      Jiaxin SuJiaqi ZhangShuming ChaiYankun WangSibo WangYuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-0. doi: 10.3866/PKU.WHXB202408012

    10. [10]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    11. [11]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    12. [12]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    13. [13]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    14. [14]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    15. [15]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    16. [16]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    17. [17]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    18. [18]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    19. [19]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    20. [20]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

Metrics
  • PDF Downloads(35)
  • Abstract views(2503)
  • HTML views(467)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return