Citation: Liu Yiyi, Zhou Rong. Progress in Annulation Reactions Based on Huisgen Zwitterion[J]. Chinese Journal of Organic Chemistry, ;2019, 39(9): 2365-2378. doi: 10.6023/cjoc201903041 shu

Progress in Annulation Reactions Based on Huisgen Zwitterion

  • Corresponding author: Liu Yiyi, liuyy_chem@163.com Zhou Rong, zhourong@tyut.edu.cn
  • Received Date: 21 March 2019
    Revised Date: 20 April 2019
    Available Online: 6 September 2019

    Fund Project: the National Natural Science Foundation of China (No. 21502135), the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province (No. 201802024)the National Natural Science Foundation of China 21502135the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province 201802024

Figures(35)

  • The development of highly efficient and selective synthetic methodologies is an important research task in organic chemistry. In recent years, the Huisgen zwitterions, a type of intermediates derived from nucleophilic addition of tertiary phosphine to azodicarboxylates, have shown unique superiority and efficiency in synthesis of azacyclic compounds, and therefore have attracted broad interest from organic chemists. A large number of annulation reactions based on Huisgen zwitterions have been reported. According to the types of electrophiles, the annulation reactions of Husigen zwitterions with carbonyl compounds, electron-deficient alkenes, imines, and other electrophiles are summarized, respectively.
  • 加载中
    1. [1]

      Cadogan, J. I. G. Organophosphorus Reagents in Organic Synthesis, Academic Press, London, 1979.

    2. [2]

      (a) Ye, L. -W.; Zhou, J.; Tang, Y. Chem. Soc. Rev. 2008, 37, 1140.
      (b) Cowen, B. J.; Miller, S. J. Chem. Soc. Rev. 2009, 38, 3102.
      (c) Marinetti, A.; Voituriez, A. Synlett 2010, 174.
      (d) Wang, S.; Han, X.; Zhong, F.; Wang, Y.; Lu, Y. Synlett 2011, 2766.
      (e) Zhao, Q.-Y.; Lian, Z.; Wei, Y.; Shi, M. Chem. Commun. 2012, 48, 1724.
      (f) Fan, Y.-C.; Kwon, O. Chem. Commun. 2013, 49, 11588.
      (g) Wang, Z.; Xu, X.; Kwon, O. Chem. Soc. Rev. 2014, 43, 2927.
      (h) Xiao, Y.; Sun, Z.; Guo, H.; Kwon, O. Beilstein J. Org. Chem. 2014, 10, 2089.
      (i) Xie, P.; Huang, Y. Org. Biomol. Chem. 2015, 13, 8578.
      (j) Xiao, Y.; Guo, H.; Kwon, O. Aldrichim. Acta 2016, 49, 3.
      (k) Wang, T.; Han, X.; Zhong, F.; Yao, W.; Lu, Y. Acc. Chem. Res. 2016, 49, 1369.
      (l) Zhou, R.; He, Z. Eur. J. Org. Chem. 2016, 1937.

    3. [3]

    4. [4]

      Quin, L. D. A Guide to Organophosphorus Chemistry, Wiley, New York, 2000, p. 379.

    5. [5]

      Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863.  doi: 10.1021/cr00094a007

    6. [6]

      Swamy, K. C. K.; Kumar, N. N. B.; Balaraman, E.; Kumar, K. Chem. Rev. 2009, 109, 2551.  doi: 10.1021/cr800278z

    7. [7]

      Gololobov, Y. G.; Kasukhin, L. F. Tetrahedron 1992, 48, 1353.  doi: 10.1016/S0040-4020(01)92229-X

    8. [8]

      Appel, R. Angew. Chem., Int. Ed. 1975, 14, 801.  doi: 10.1002/anie.197508011

    9. [9]

      (a) Huisgen, R.; Blaschke, H.; Brunn, E. Tetrahedron Lett. 1966, 7, 405.
      (b) Brunn, E.; Huisgen, R. Angew. Chem., Int. Ed. 1969, 8, 513.
      (c) Itzstein, M. v.; Jenkins, I. D. Aust. J. Chem. 1983, 36, 557.
      (d) Monge, D.; Jensen, K. L.; Marín, I.; Jø rgensen, K. A. Org. Lett. 2011, 13, 328.

    10. [10]

      Nair, V.; Menon, R. S.; Sreekanth, A. R.; Abhilash, N.; Biju, A. T. Acc. Chem. Res. 2006, 39, 520.  doi: 10.1021/ar0502026

    11. [11]

      Nair, V.; Biju, A. T.; Mathew, S. C.; Babu, B. P. Chem. Asian J. 2008, 3, 810.  doi: 10.1002/asia.200700341

    12. [12]

      Košmrlj, J.; Kočevar, M.; Polanc, S. Synlett 2009, 2217.

    13. [13]

      Cookson, R. C.; Locke, J. M. J. Chem. Soc. 1963, 6062.

    14. [14]

      Kolasa, T.; Miller, M. J. J. Org. Chem.1987, 52, 4978.  doi: 10.1021/jo00231a026

    15. [15]

      Otte, R. D.; Sakata, T.; Guzei, I. A.; Lee, D. Org. Lett. 2005, 7, 495.  doi: 10.1021/ol051956n

    16. [16]

      (a) Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001, 34, 535.
      (b) Wei, Y.; Shi, M. Acc. Chem. Res. 2010, 43, 1005.
      (c) Huang, Y.; Xie, P. Eur. J. Org. Chem. 2013, 6213.
      (d) Wei, Y.; Shi, M. Chem. Rev. 2013, 113, 6659.
      (e) Li, W.; Zhang, J. Chem. Soc. Rev. 2016, 45, 1657.

    17. [17]

      Nair, V.; Biju, A. T.; Vinod, A. U.; Suresh, E. Org. Lett. 2005, 7, 5139.  doi: 10.1021/ol051956n

    18. [18]

      Dogan, H. N.; Duran, A.; Rollas, S.; Sener, G.; Armutak, Y.; Keyer Uysal, M. Med. Sci. Res. 1998, 26, 755.
       

    19. [19]

      Wang, Z.-D.; Dong, N.; Wang, F.; Li, X.; Cheng, J.-P. Tetrahedron Lett. 2013, 54, 5473.  doi: 10.1016/j.tetlet.2013.07.129

    20. [20]

      Nair, V.; Mathew, S. C.; Biju, A. T.; Suresh, E. Angew. Chem., Int. Ed. 2007, 46, 2070.  doi: 10.1002/anie.200604025

    21. [21]

      (a) Elguero, J. In Comprehensive Heterocyclic Chemistry, Vol. 5, Eds.: Katritzky, A. R.; Rees, C. W.; Potts, K. T., Pergamon, Oxford, 1984, p. 167.
      (b) Elguero, J. In Comprehensive Heterocyclic Chemistry Ⅱ, Vol. 3, Eds.: Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V., Pergamon, Oxford, 1996, p. 1.

    22. [22]

      (a) BraLa, M. F.; Cacho, M.; GarcMa, M. L.; Mayoral, E. P.; LNpez, B.; Pascual-Teresa, B.; Ramos, A.; Acero, N.; Llinares, F.; MuLozMingarro, D.; Lozach, O.; Meijer, L. J. Med. Chem. 2005, 48, 6843.
      (b) Witherington, J.; Bordas, V.; Haigh, D.; Hickey, D. M. B.; Ife, R. J.; Rawlings, A. D.; Slingsby, B. P.; Smith, D. G.; Ward, R. W. Bioorg. Med. Chem. Lett. 2003, 13, 1581.
      (c) Tewari, A. K.; Mishra, A. Bioorg. Med. Chem. 2001, 9, 715.

    23. [23]

      Liu, W.; Khedkar, V.; Baskar, B.; Schürmann, M.; Kumar, K. Angew. Chem., Int. Ed. 2011, 50, 6900.  doi: 10.1002/anie.201102440

    24. [24]

      Baskar, B.; Wittstein, K.; Sankar, M. G.; Khedkar, V.; Schürmann, M.; Kumar, K. Org. Lett. 2012, 14, 5924.  doi: 10.1021/ol3028412

    25. [25]

      Papafilippou, A.; Terzidis, M. A.; S.-S.Julia.; Tsoleridis, C. A. Tetrahedron Lett. 2011, 52, 1306.  doi: 10.1016/j.tetlet.2011.01.063

    26. [26]

      (a) McCleverty, J. A.; Meyer, T. J. Comprehensive Coordination Chemistry Ⅱ, Elsevier Ltd, Boston, 2003.
      (b) Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029.
      (c) Bö rner, A. Phosphorus Ligands in Asymmetric Catalysis, Wiley-VCH, Weinheim, Germany, 2008.
      (d) Zhou, Q.-L. Privileged Chiral Ligands and Catalysts, Wiley- VCH, Weinheim, Germany, 2011.
      (e) Zhang, C.; Lu, X. J. Org. Chem. 1995, 60, 2906.

    27. [27]

      Nair, V.; Biju, A. T.; Mohanan, K.; Suresh, E. Org. Lett. 2006, 8, 2213.  doi: 10.1021/ol0604623

    28. [28]

      Chakravarty, M.; Kumar, N. N. B; Sajna, K. V.; Swamy, K. C. K. Eur. J. Org. Chem. 2008, 4500.
       

    29. [29]

      Lü, R.; Cheng, X.; Zheng, X.; Ma, S. Chem. Commun. 2014, 50, 1537.  doi: 10.1039/c3cc48215d

    30. [30]

      (a) Kazmo, Y.; Akira, M.; Norihiko, M.; Toshiio, M.; Kazutaka, A. Shigera, I. Pestic. Sci. 1999, 55, 161.
      (b) Gursoy, A.; Demirayak, M. S.; Ç apan, G.; Erol, K.; Vural, K. Eur. J. Med. Chem. 2000, 35, 359.
      (c) Badawey, E. A. M.; El-Ashmawey, I. M. Eur. J. Med. Chem. 1998, 33, 349.

    31. [31]

      Yamazaki, S.; Maenaka, Y.; Fujinami, K.; Mikata, Y. RSC Adv. 2012, 2, 8095.  doi: 10.1039/c2ra21249h

    32. [32]

      Yang, C.; Li J.; Zhou, R.; Chen, X.; Gao, Y.; He, Z. Org. Biomol. Chem. 2015, 13, 4869.  doi: 10.1039/C5OB00258C

    33. [33]

      Yang, C.; Chen, X.; Tang, T.; He, Z. Org. Lett. 2016, 18, 1486.  doi: 10.1021/acs.orglett.6b00456

    34. [34]

      Li, Y.; Zhang, H.; Wei, R.; Miao, Z. Adv. Synth. Catal. 2017, 359, 4158.  doi: 10.1002/adsc.201701013

    35. [35]

      Lian, Z.; Guan, X.-Y.; Shi, M. Tetrahedron 2011, 67, 2018.  doi: 10.1016/j.tet.2011.01.072

    36. [36]

      Sankar, M. G.; Garcia-Castro, M.; Wang, Y.; Kumar, K. Asian J. Org. Chem. 2013, 2, 646.  doi: 10.1002/ajoc.201300120

    37. [37]

      Alizadeh, A. Helv. Chim. Acta 2005, 88, 2777.  doi: 10.1002/hlca.200590218

    38. [38]

      Cui, S.-L.; Wang, J.; Wang, Y.-G. Org. Lett. 2008, 10, 13.  doi: 10.1021/ol7022888

    39. [39]

      Sun, Y.; Jiang, Z.; Hong, D.; Lu, P.; Wang, Y.; Lin, X. Tetrahedron 2010, 66, 2427.  doi: 10.1016/j.tet.2010.01.087

    40. [40]

      Zhang, W.; Zhu, Y.; Wei, D.; Tang, M. J. Comput. Chem. 2012, 33, 715.  doi: 10.1002/jcc.22906

    41. [41]

      Saha, J.; Lorenc, C.; Surana, B.; Peczuh, M. W. J. Org. Chem. 2012, 77, 3846.  doi: 10.1021/jo3001854

    42. [42]

      Yang, C.; Liu, W.; He, Z.; He, Z. Org. Lett. 2016, 18, 4936.  doi: 10.1021/acs.orglett.6b02415

  • 加载中
    1. [1]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    2. [2]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    3. [3]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    4. [4]

      Xuyu WANGXinran XIEDengke CAO . Photoreaction characteristics and luminescence modulation in phosphine-anthracene-based Au(Ⅰ) and Ir(Ⅲ) complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1513-1522. doi: 10.11862/CJIC.20250113

    5. [5]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    6. [6]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    7. [7]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    8. [8]

      Qianping Li Hua Guan Changfeng Wan Yonghai Song Jianwen Jiang . 大学有机化学复习课项目式教学——以“液晶化合物4-正戊基苯甲酸-4′-正戊基苯酯的合成路线设计与产品制备”为例. University Chemistry, 2025, 40(8): 100-116. doi: 10.12461/PKU.DXHX202410070

    9. [9]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    10. [10]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    11. [11]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    12. [12]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    13. [13]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    14. [14]

      Xinghai Liu Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100

    15. [15]

      Guilan He Yaofeng Yuan . 手性二茂铁双膦配体Xyliphos的合成及应用. University Chemistry, 2025, 40(8): 130-137. doi: 10.12461/PKU.DXHX202409122

    16. [16]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    17. [17]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    18. [18]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    19. [19]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    20. [20]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

Metrics
  • PDF Downloads(30)
  • Abstract views(1757)
  • HTML views(302)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return