Pyridine Bridged Organocatalyst for the Synthesis of 3-Aryl-2-oxazolidinones from Carbon Dioxide, Terminal Epoxide, and Aryl Amine
- Corresponding author: Liu Ning, ningliu@shzu.edu.cn
Citation:
Liu Quanyao, Shi Lei, Liu Ning. Pyridine Bridged Organocatalyst for the Synthesis of 3-Aryl-2-oxazolidinones from Carbon Dioxide, Terminal Epoxide, and Aryl Amine[J]. Chinese Journal of Organic Chemistry,
;2019, 39(10): 2882-2891.
doi:
10.6023/cjoc201903030
(a) Niemi, T.; Repo, T. Eur. J. Org. Chem. 2019, 1180.
(b) Chellat, M. F.; Raguž, L.; Riedl, R. Angew. Chem., Int. Ed. 2016, 55, 6600.
(c) Niemi, T.; Perea-Buceta, J. E.; Fernández, I.; Alakurtti, S.; Rantala, E.; Repo, T. Chem.-Eur. J. 2014, 20, 8867.
(d) Dinsmore, C. J.; Mercer, S. P. Org. Lett. 2004, 6, 2885.
(a) Chen, G.; Fu, C.; Ma, S. Org. Lett. 2009, 11, 2900.
(b) Li, S.; Ye, J.; Yuan, W.; Ma, S. Tetrahedron 2013, 69, 10450.
(a) Kayaki, Y.; Mori, N.; Ikariya, T. Tetrahedron Lett. 2009, 50, 6491.
(b) Yamashita, K.; Hase, S.; Kayaki, Y.; Ikariya, T. Org. Lett. 2015, 17, 2334.
(a) Wang, X.; Gao, W.-Y.; Niu, Z.; Wojtas, L.; Perman, J. A.; Chen, Y.-S.; Li, Z.; Aguila, B.; Ma, S. Chem. Commun. 2018, 54, 1170.
(b) Dabral, S.; Schaub, T. Adv. Synth. Catal. 2019, 361, 223.
(c) Adhikari, D.; Miller, A. W.; Baik, M.-H.; Nguyen, S. T. Chem. Sci. 2015, 6, 1293.
(d) Liu, A.-H.; Dang, Y.-L.; Zhou, H.; Zhang, J.-J.; Lu, X.-B. ChemCatChem 2018, 10, 2686.
(e) Seayad, J.; Seayad, A. M.; Ng, J. K. P.; Chai, C. L. L. ChemCatChem 2012, 4, 774.
(f) Saptal, V. B.; Bhanage, B. M. ChemSusChem 2016, 9, 1980.
(g) Liu, X.-F.; Wang, M.-Y.; He, L.-N. Curr. Org. Chem. 2017, 21, 698.
(h) Phung, C.; Ulrich, R. M.; Ibrahim, M.; Tighe, N. T. G.; Lieberman, D. L.; Pinhas, A. R. Green Chem. 2011, 13, 3224.
(i) Yang, Z.-Z.; Li, Y.-N.; Wei, Y.-Y.; He, L.-N. Green Chem. 2011, 13, 2351.
(j) Chen, Y.; Luo, R.; Yang, Z.; Zhou, X.; Ji, H. Sustainable Energy Fuels 2018, 2, 125.
(k) Kathalikkattil, A. C.; Tharun, J.; Roshan, R.; Soek, H.-G.; Park, D.-W. Appl. Catal., A 2012, 447-448, 107.
(l) Zhao, Y.-N.; Yang, Z.-Z.; Luo, S.-H.; He, L.-N. Catal. Today 2013, 200, 2.
(a) Ye, J.-H.; Song, L.; Zhou, W.-J.; Ju, T.; Yin, Z.-B.; Yan, S.-S.; Zhang, Z.; Li, J.; Yu, D.-G. Angew. Chem., Int. Ed. 2016, 55, 10022.
(b) Wang, M.-Y.; Cao, Y.; Liu, X.; Wang, N.; He, L.-N.; Li, S.-H. Green Chem. 2017, 19, 1240.
(c) Yin, Z.-B.; Ye, J.-H.; Zhou, W.-J.; Zhang, Y.-H.; Ding, L.; Gui, Y.-Y.; Yan, S.-S.; Li, J.; Yu, D.-G. Org. Lett. 2018, 20, 190.
(d) Sun, L.; Ye, J.-H.; Zhou, W.-J.; Zeng, X.; Yu, D.-G. Org. Lett. 2018, 20, 3049.
(e) Takeda, Y.; Okumura, S.; Tone, S.; Sasaki, I.; Minakata, S. Org. Lett. 2012, 14, 4874.
(a) Peshkov, V. A.; Pereshivko, O. P.; Nechaev, A. A.; Peshkov, A. A.; Van der Eycken, E. V. Chem. Soc. Rev. 2018, 47, 3861.
(b) Brunel, P.; Monot, J.; Kefalidis, C. E.; Maron, L.; Martin-Vaca, B.; Bourissou, D. ACS Catal. 2017, 7, 2652.
(c) Chang, Z.; Jing, X.; He, C.; Liu, X.; Duan, C. ACS Catal. 2018, 8, 1384.
(d) Zhao, Y.; Qiu, J.; Tian, L.; Li, Z.; Fan, M.; Wang, J. ACS Sustainable Chem. Eng. 2016, 4, 5553.
(e) Hu, J.; Ma, J.; Zhu, Q.; Zhang, Z.; Wu, C.; Han, B. Angew. Chem., Int. Ed. 2015, 54, 5399.
(f) García-Domínguez, P.; Fehr, L.; Rusconi, G.; Nevado, C. Chem. Sci. 2016, 7, 3914.
(g) Liu, X.; Wang, M.-Y.; Wang, S.-Y.; Wang, Q.; He, L.-N. ChemSusChem 2017, 10, 1210.
(h) Hu, J.; Ma, J.; Zhang, Z.; Zhu, Q.; Zhou, H.; Lu, W.; Han, B. Green Chem. 2015, 17, 1219.
(i) Zhao, D.; Liu, X.-H.; Zhu, C.; Kang, Y.-S.; Wang, P.; Shi, Z.; Lu, Y.; Sun, W.-Y. ChemCatChem 2017, 9, 4598.
(j) Yang, H.; Zhang, X.; Zhang, G.; Fei, H. Chem. Commun. 2018, 54, 4469.
(a) Rintjema, J.; Epping, R.; Fiorani, G.; Martín, E.; Escudero-Adán, E. C.; Kleij, A. W. Angew. Chem., Int. Ed. 2016, 55, 3972.
(b) Rintjema, J.; Guo, W.; Martin, E.; Escudero-Adán, E. C.; Kleij, A. W. Chem.-Eur. J. 2015, 21, 10754.
(c) Lee, Y.; Choi, J.; Kim, H. Org. Lett. 2018, 20, 5036.
(a) Niemi, T.; Perea-Buceta, J. E.; Fernández, I.; Hiltunen, O.-M.; Salo, V.; Rautiainen, S.; Räisänen, M. T.; Repo, T. Chem.-Eur. J. 2016, 22, 10355.
(b) Mei, C.; Zhao, Y.; Chen, Q.; Cao, C.; Pang, G.; Shi, Y. ChemCatChem 2018, 10, 3057-3068.
(a) Wang, B.; Yang, S.; Min, L.; Gu, Y.; Zhang, Y.; Wu, X.; Zhang, L.; Elageed, E. H. M.; Wu, S.; Gao, G. Adv. Synth. Catal. 2014, 356, 3125.
(b) Zhang, L.; Fu, X.; Gao, G. ChemCatChem 2011, 3, 1359.
(c) Selva, M.; Fabris, M.; Lucchini, V.; Perosa, A.; Noè, M. Org. Biomol. Chem. 2010, 8, 5187.
(d) Lang, X.-D.; Li, Z.-M.; He, L.-N. Catal. Today 2019, 324, 167.
(e) Hang, G.; Nian-Fa, Y.; Guo-Jun, D.; Guang-Yi, X. Chem. Lett. 2009, 38, 584.
(f) Zhang, Y.; Wang, B.; Elageed, E. H. M.; Qin, L.; Ni, B.; Liu, X.; Gao, G. ACS Macro Lett. 2016, 5, 435.
Wang, B.; Elageed, E. H. M.; Zhang, D.; Yang, S.; Wu, S.; Zhang, G.; Gao, G. ChemCatChem 2014, 6, 278.
doi: 10.1002/cctc.201300801
Hosseinian, A.; Ahmadi, S.; Mohammadi, R.; Monfared, A.; Rahmani, Z. J. CO2 Util. 2018, 27, 381.
doi: 10.1016/j.jcou.2018.08.013
Wang, B.; Luo, Z.; Elageed, E. H. M.; Wu, S.; Zhang, Y.; Wu, X.; Xia, F.; Zhang, G.; Gao, G. ChemCatChem 2016, 8, 830.
doi: 10.1002/cctc.201500928
Lv, M.; Wang, P.; Yuan, D.; Yao, Y. ChemCatChem 2017, 9, 4451.
doi: 10.1002/cctc.201700594
Seo, U. R.; Chung, Y. K. Green Chem. 2017, 19, 803.
doi: 10.1039/C6GC02934E
Sadeghzadeh, S. M.; Zhiani, R.; Emrani, S. Catal. Lett. 2018, 148, 119.
doi: 10.1007/s10562-017-2217-z
Xu, B.; Wang, P.; Lv, M.; Yuan, D.; Yao, Y. ChemCatChem 2016, 8, 2466.
doi: 10.1002/cctc.201600534
Chen, F.; Li, M.; Wang, J.; Dai, B.; Liu, N. J. CO2 Util. 2018, 28, 181.
doi: 10.1016/j.jcou.2018.09.025
(a) Wang, L.; Liu, N.; Dai, B.; Hu, H. Eur. J. Org. Chem. 2014, 2014, 6493.
(b) Liu, Q.-Y.; Shi, L.; Liu, N. J. Chem. Res. 2019, 43, 248.
Wang, P.; Qin, J.; Yuan, D.; Wang, Y.; Yao, Y. ChemCatChem 2015, 7, 1145.
doi: 10.1002/cctc.201403015
Yanhui Guo , Li Wei , Zhonglin Wen , Chaorong Qi , Huanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004
Xiaofei Liu , He Wang , Li Tao , Weimin Ren , Xiaobing Lu , Wenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008
Honghong Zhang , Zhen Wei , Derek Hao , Lin Jing , Yuxi Liu , Hongxing Dai , Weiqin Wei , Jiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
Jianan Hong , Chenyu Xu , Yan Liu , Changqi Li , Menglin Wang , Yanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099
Hui-Ying Chen , Hao-Lin Zhu , Pei-Qin Liao , Xiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
Zixuan Zhao , Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040
Yueguang Chen , Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
Jingping Li , Suding Yan , Jiaxi Wu , Qiang Cheng , Kai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104
Lewang Yuan , Yaoyao Peng , Zong-Jie Guan , Yu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086
Wang Wang , Yucheng Liu , Shengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059
Shijie Ren , Mingze Gao , Rui-Ting Gao , Lei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040