Citation: Liu Lice, Wu Jieqing, Ma Hongfei, Zhang Han, Gu Jiefan, Li Yufeng. Nickel Chloride-Catalyzed Oxidation of Aromatic Hydrocarbon with Sodium Persulfate at the Benzylic Site[J]. Chinese Journal of Organic Chemistry, ;2019, 39(6): 1688-1694. doi: 10.6023/cjoc201903003 shu

Nickel Chloride-Catalyzed Oxidation of Aromatic Hydrocarbon with Sodium Persulfate at the Benzylic Site

  • Corresponding author: Li Yufeng, yufengli@njtech.edu.cn
  • Received Date: 2 March 2019
    Revised Date: 18 April 2019
    Available Online: 26 June 2019

Figures(2)

  • A practical method for the oxidation of aromatic side chains was established for the preparation of aromatic aldehydes and ketones. Using NiCl2 as the catalyst, substituted toluenes were oxidized with Na2S2O8 at the benzylic site for the synthesis of the corresponding aldehydes in the yield of 22%~79%. Ethylbenzene analogs were oxidized more easily to obtain the corresponding ketones with 64%~84% yields. The oxidation of benzyl alcohol analogs was completed to acquire the corresponding carbonyl compounds in shorter time with better selectivity and yields. The method has the advantages such as the mild reaction conditions, no requirement for precious metals or additional promoter, and good selectivity.
  • 加载中
    1. [1]

      (a) Sheldon, R. A.; Kochi, J. K. Metal Catalyzed Oxidations of Organic Compounds, Academic Press, New York, 1981.
      (b) Trost, B. M.; Fleming, I. Comprehensive Organic Synthesis (Oxidation), Pergamon, New York, 1991, Vol. 7.
      (c) Zhang, J. T.; Wang, Z. T.; Wang, L.; Wan, C. F.; Zheng, X. Q.; Wang, Z. Y. Green. Chem. 2009, 11, 1973.

    2. [2]

      Rao, K. T. V.; Rao, P. S. N.; Nagaraju, P.; Prasad, P. S. S.; Lingaiah, N. J. Mol. 2009, 303, 84.  doi: 10.1016/j.molcata.2009.01.006

    3. [3]

      (a) Anastas, P.; Eghbali, N. Chem. Soc. Rev. 2010, 39, 301.
      (b) Yiu, S. M.; Wu, Z. B.; Mak, C. K.; Lau, T. C. J. Am. Chem. Soc. 2004, 126, 14921.
      (c) Hudlicky, M. Oxidations in Organic Chemistry, American Chemical Society, Washington, DC, 1990.

    4. [4]

    5. [5]

      (a) Ohkubo, K.; Fukuzumi, S. Org. Lett. 2000, 2, 3647.
      (b) Kei, O.; Kyou, S.; Kohei, M.; Shunichi, F. J. Am. Chem. Soc. 2003, 125, 12850.
      (c) Pahari, S. K.; Pal, P.; Srivastava, D. N.; Ghosh, S. C.; Panda, A. B. Chem. Commun. 2015, 51, 10322.
      (d) Li, S. L.; Zhu, B.; Lee, R.; Qiao, B. K.; Jiang, Z. Y. Org. Chem. Front. 2018, 5, 380.

    6. [6]

      (a) Jr, L. Q.; Tolman, W. B. Nature 2008, 455. 333.
      (b) Rickert, A.; Krombach, V.; Hamers, O.; Zorn, H.; Maison, W. G. Green Chem. 2012, 14, 639.
      (c) Roiban, G. D.; Agudo, R.; Reetz, M. T. Angew. Chem., Int. Ed. 2014, 53, 8659.
      (d) Nastri, F.; Chino, M.; Maglio, O.; Damodaran, A. B.; Lu, Y.; Lombardi, A. Chem. Soc. Rev. 2016, 45, 5020.

    7. [7]

      (a) Nam, W. Acc. Chem. Res. 2007, 40, 522.
      (b) Ding, Z. D.; Zhu, W.; Li, T.; Shen, R.; Li, Y. X.; Li, Z. J.; Ren, X. H.; Gu, Z. G. Dalton Trans. 2017, 46, 11372.

    8. [8]

      (a) Qi, J. Y.; Ma, H. X.; Li, X. J.; Zhou, Z. Y.; Choi, M. C. K.; Chan, A. S. C.; Yang, Q. Y. Chem. Commun. 2003, 1294.
      (b) Wang, B.; Mao, W.; Ma, H. Z. Ind. Eng. Chem. Res. 2009, 48, 440.
      (c) Potapenko, E. V.; Andreev, P. Y. Russ. J. Appl. Chem. 2011, 84, 984.

    9. [9]

      (a) Lane, B.-S.; Burgess, K. Chem. Rev. 2003, 103, 2457.
      (b) Wang, Y.; Li, H. R.; Yao, J.; Wang, X. C.; Antoniettia, M. Chem. Sci. 2011, 2, 446.
      (c) Shen, D. Y.; Miao, C. X.; Wang, S. F.; Xia, C. G.; Sun, W. Org. Lett. 2014, 16, 1108.
      (d) Verma, S.; Baig, R. B. N.; Nadagouda, M. N.; Varma, R. S. ACS Sustainable Chem. Eng. 2016, 4, 2333.
      (e) Saisaha, P.; Dong, J. J.; Meinds, T. G.; Johannes, W.; Hage, R.; Mecozzi, F.; Kasper, J. B.; Browne, W. R. ACS Catal. 2016, 6, 3486.
      (f) Konstantin, P.; Bryliakov Chem. Rev. 2017, 117, 11406.

    10. [10]

      (a) Halina, W.; Soroko, G.; Jacek, M. Synth. Commun. 2008, 38, 2000.
      (b) Hossain, M. M.; Shyu, S. G. Tetrahedron 2016, 72, 4252.
      (c) Xu, W. X.; Zhang, Z. Q.; Zhao, X.; Li, J. Coord. Chem. 2017, 70, 746.
      (d) Chen, Y.; Jie, S. S.; Yang, C. Q.; Liu, Z. G. Appl. Surf. Sci. 2017, 419, 98.
      (e) Sun, Q.; Song, X. Y.; Gao, L.; Chen, W.; Li, Y.; Mao, L.; Yang, J. H. Chem. Pap. 2018, 72, 2203.

    11. [11]

      (a) Badri, R.; Adlu, M.; Mohammadi, M. K. Arabian J. Chem. 2015, 8, 62.
      (b) Hu, Y. X.; Zhou, L. H.; Lu, W. J. Synthesis 2017, 49, 4007.
      (c) Han, W.; Zhao, H. Y. CN 107216242, 2017[Chem. Abstr. 2017, 167, 528688].

    12. [12]

      Jakob, H.; Leininger, S.; Lehmann, T.; Jacobi, S.; Gutewort, S. Ullmann's Encyclopedia of Industrial Chemistry, Weinheim, W. C. Germany, 2012, Vol. 26, p. 308.

    13. [13]

      Li, Y. F.; Zhang, H.; Dai, C. W.; Liu, L. C.; Ma, H. F.; Pu, H. Z. Tetrahedron 2018, 74, 3712.  doi: 10.1016/j.tet.2018.05.045

    14. [14]

      Lin, X.; Nie, Z. Z.; Zhang, L. Y.; Mei, S. C.; Chen, Y. Green Chem. 2017, 19, 2164.  doi: 10.1039/C7GC00469A

    15. [15]

      Zhang, B. S.; Zhu, R. L.; Liu, Z. G.; Xin, L.; Zhang, J. S. Org. Chem. Front. 2016, 3, 1326.  doi: 10.1039/C6QO00237D

    16. [16]

      Guo, T. F.; Gao, Y.; Li, Z. J.; Liu, J. J.; Guo, K. Synlett 2019, 30, 329.  doi: 10.1055/s-0037-1611183

    17. [17]

      Gholizadeh, M.; Baltork, I. M. Bull. Korean Chem. Soc. 2005, 26, 11.

    18. [18]

      Castle, R. N.; Riebsomer, J. L. ACS Sustainable Chem. Eng. 1955, 21, 142.

    19. [19]

      Richard, R. B.; Louise, J. B. J. Anal. Appl. Pyrolysis 2004, 71, 223.  doi: 10.1016/S0165-2370(03)00090-1

    20. [20]

      Cui, L. Q.; Liu, K.; Zhang, C. Org. Biomol. Chem. 2011, 9, 2258.  doi: 10.1039/c0ob00722f

    21. [21]

      Kaneyuki, H. Bull. Chem. Soc. Jpn. 1961, 35, 519.

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Peiyu Zhang Aixin Song Jingcheng Hao Jiwei Cui . 高频超声法制备聚多巴胺薄膜综合实验. University Chemistry, 2025, 40(6): 210-214. doi: 10.12461/PKU.DXHX202407081

    3. [3]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    4. [4]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    5. [5]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    6. [6]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    7. [7]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    8. [8]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    9. [9]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    10. [10]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    11. [11]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    12. [12]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    13. [13]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    14. [14]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    15. [15]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    16. [16]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    17. [17]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    18. [18]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    19. [19]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    20. [20]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

Metrics
  • PDF Downloads(14)
  • Abstract views(1668)
  • HTML views(277)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return