Citation: Zhou Xinyun, Xie Lingchao, Wu Kaile, Tan Songting. Synthesis and Photovoltaic Properties of Organic Dyes Containing Dendritic and 3D Triphenylamine Derivatives[J]. Chinese Journal of Organic Chemistry, ;2019, 39(9): 2589-2598. doi: 10.6023/cjoc201902023 shu

Synthesis and Photovoltaic Properties of Organic Dyes Containing Dendritic and 3D Triphenylamine Derivatives

  • Corresponding author: Tan Songting, tanst2008@163.com
  • These authors contributed equally to this work
  • Received Date: 21 February 2019
    Revised Date: 14 April 2019
    Available Online: 19 September 2019

    Fund Project: the National Natural Science Foundation of China 21875204Project supported by the National Natural Science Foundation of China (Nos. 21875204, 51173154)the National Natural Science Foundation of China 51173154

Figures(10)

  • Three organic dyes with dendritic and 3D triphenylamine derivatives as the donor unit, benzoic acid as the acceptor unit and benzothiadiazole (BT) or difluorobenzothiadiazole (DFBT) as the second acceptor were designed and synthesized. The influences of different donors and second acceptors on the photophysical, electrochemical and photovoltaic properties of dye-sensitizers were systematically investigated. The organic dye with dendritic triphenylamine derivative as a donor unit possesses a higher molar absorption coefficient, and the organic dye with 3D triphenylamine derivative (IDTTPA) as a donor unit has a broader absorption spectrum. The dye-sensitized solar cells based on three organic dyes achieved power conversion efficiencies of 5.27%, 4.22% and 5.50%, respectively. After optimizing the battery with 1 mmol·L-1 co-adsorbent chenodeoxycholic acid (CDCA), the power conversion efficiencies of the organic dyes were increased to 5.46%, 4.98% and 6.26%, respectively.
  • 加载中
    1. [1]

      O'regan, B.; Grätzel, M. Nature 1991, 353, 737.  doi: 10.1038/353737a0

    2. [2]

      Hagfeldt, A.; Boschloo, G.; Sun, L. C.; Kloo, L.; Pettersson, H. Chem. Rev. 2010, 110, 6595.  doi: 10.1021/cr900356p

    3. [3]

      Clifford, J. N.; Martínez-Ferrero, E.; Viterisi, A.; Palomares, E. Chem. Soc. Rev. 2011, 40, 1635.  doi: 10.1039/B920664G

    4. [4]

      Wu, Y.-Z.; Zhu, W. H. Chem. Soc. Rev. 2013, 42, 2039.  doi: 10.1039/C2CS35346F

    5. [5]

      Kou, D.-X.; Liu, W.-Q.; Hu, L.-H.; Chen, S.-H.; Huang, Y.; Dai, S.-Y. Acta Chim. Sinica 2013, 71, 1149 (in Chinese).
       

    6. [6]

      Feng, X.-M.; Huang, X.-W.; Tan, Z.; Zhao, B.; Tan, S.-T. Acta Chim. Sinica 2011, 69, 653 (in Chinese).
       

    7. [7]

      Huang, X.-W.; Deng, J.-Y.; Xu, L.; Shen, P.; Zhao, B.; Tan, S.-T. Acta Chim. Sinica 2012, 70, 1604 (in Chinese).
       

    8. [8]

      Li, J.; Kong, F.-T.; Zhang, C.-N.; Liu, W.-Q.; Dai, S.-Y. Acta Chim. Sinica 2010, 68, 1357 (in Chinese).
       

    9. [9]

      Tang, X.; Wang, Y.-X. Acta Chim. Sinica 2013, 71, 193 (in Chinese).
       

    10. [10]

      Wang, J.-W.; Li, Y.; Xu, Y.-L.; Li, Y.; Shen, K.-H. Acta Chim. Sinica 2012, 70, 1278 (in Chinese).  doi: 10.3969/j.issn.0251-0790.2012.06.026

    11. [11]

      He, J.-J.; Chen, S.-X.; Wang, T.-T.; Zeng, H.-P. Chin. J. Org. Chem. 2012, 32, 472 (in Chinese).
       

    12. [12]

      Cao, Y.-M.; Bai, Y.; Yu, Q.-J.; Cheng, Y.-M.; Liu, S.; Shi, D.; Gao, F.-F.; Wang, P. J. Phys. Chem. C 2009, 113, 6290.

    13. [13]

      Yella, A.; Mai, C. L.; Zakeeruddin, S. M.; Chang, S. N.; Hsieh, C. H.; Yeh, C. Y.; Grätzel, M. Angew. Chem., Int. Ed. 2014, 53, 2973.  doi: 10.1002/anie.201309343

    14. [14]

      Gupta, K.; Singh, S. P.; Islam, A.; Han, L.; Chandrasekharam, M. Electrochim. Acta 2015, 174, 581.  doi: 10.1016/j.electacta.2015.05.158

    15. [15]

      Mishra, A.; Fischer, M. K.; Bäuerle, P. Angew. Chem., Int. Ed. 2009, 48, 2474.  doi: 10.1002/anie.200804709

    16. [16]

      Han, L.; Zhou, X.; Ye, Q.; Li, Y.-J.; Gao, J.-R. Chin. J. Org. Chem. 2013, 33, 1000 (in Chinese).
       

    17. [17]

      Wang, Z.-S.; Cui, Y.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Hara, K. J. Phys. Chem. C 2008, 112, 17011.  doi: 10.1021/jp806927b

    18. [18]

      Su, J.-Y.; Chen, Y.; Wu, Y.-G.; Ghimire, R. P.; Xu, Y.-J.; Liu, X.-J.; Wang, Z.-H.; Liang, M. Electrochim. Acta 2017, 254, 191.  doi: 10.1016/j.electacta.2017.09.133

    19. [19]

      Han, L.; Wu, L.; Tong, Y.-Z.; Zu, X.-Y.; Jiang, S.-L. Chin. J. Org. Chem. 2017, 37, 2940 (in Chinese).
       

    20. [20]

      Chen, S.-G.; Jia, H.-L.; Ju, X.-H.; Zheng, H.-G. Dyes Pigm. 2017, 146, 127.  doi: 10.1016/j.dyepig.2017.06.068

    21. [21]

      Zhu, B.-Y.; Wu, L.; Ye, Q.; Gao, J.-R.; Han, L. Tetrahedron 2017, 73, 6307.  doi: 10.1016/j.tet.2017.09.018

    22. [22]

      Liang, M.; Xu, Y.-J.; Wang, X.-D.; Liu, X.-J.; Sun, Z.; Xue, S. Acta Chim. Sinica 2011, 69, 2092 (in Chinese).
       

    23. [23]

      Cao, Z.-C.; He, Z.; Deng, L.-J.; Tan, S.-T. Chin. J. Org. Chem. 2014, 34, 340 (in Chinese).
       

    24. [24]

      Li, Q.-Q.; Shi, J.; Li, H.-Y.; Li, S.; Zhong, C.; Guo, F.-L.; Peng, M.; Hua, J.-L.; Qin, J.-G.; Li, Z. J. Mater. Chem. 2012, 22, 6689.  doi: 10.1039/c2jm30200d

    25. [25]

      Ito, S.; Miura, H.; Uchida, S.; Takata, M.; Sumioka, K.; Liska, P.; Comte, P.; Péchy, P.; Grätzel, M. Chem. Commun. 2008, 5194.

    26. [26]

      Wu, Y.-Z.; Zhang, X.; Li, W.-Q.; Wang, Z.-S.; Tian, H.; Zhu, W.-H. Adv. Energy Mater. 2012, 2, 149.  doi: 10.1002/aenm.201100341

    27. [27]

      Li, Q.-Q.; Lu, L.-L.; Zhong, C.; Shi, J.; Huang, Q.; Jin, X.-B.; Peng, T.-Y.; Qin, J.-G.; Li, Z. J. Phys. Chem. B 2009, 113, 14588.  doi: 10.1021/jp906334w

    28. [28]

      Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Fujisawa, J.; Hanaya, M. Chem. Commun. 2015, 51, 15894.  doi: 10.1039/C5CC06759F

    29. [29]

      Liu, Z.-X.; Duan, K.-K.; Guo, H.; Deng, Y.-H.; Huang, H.-L.; Yi, X.-Y.; Chen, H.-J.; Tan, S.-T. Dyes Pigm. 2017, 140, 312.  doi: 10.1016/j.dyepig.2017.01.026

    30. [30]

      Zhu, H.-B.; Li, W.-Q.; Wu, Y.-Z.; Liu, B.; Zhu, S.-Q.; Li, X.; Agren, H.; Zhu, W.-H. ACS Sustainable Chem. Eng. 2014, 2, 1026.  doi: 10.1021/sc500035j

    31. [31]

      Han, L.; Zu, X.-Y.; Cui, Y.-H.; Wu, H.-B.; Ye, Q.; Gao, J.-R. Org. Electron. 2014, 15, 1536.  doi: 10.1016/j.orgel.2014.04.016

    32. [32]

      Pan, B.; Zhu, Y.-Z.; Qiu, C.-J.; Wang, B.; Zheng, J.-O. Acta Chim. Sinica 2018, 76, 215 (in Chinese).
       

    33. [33]

      Chen, H.-J.; Huang, H.; Huang, X.-W.; Clifford, J. N.; Forneli, A.; Palomares, E.; Zheng, X.-Y.; Zheng, L.-P.; Wang, X.-Y.; Shen, P.; Zhao, B.; Tan, S.-T. J. Phys. Chem. C 2010, 114, 3280.

    34. [34]

      Huang, H.-L.; Chen, H.-J.; Long, J.; Wang, G.; Tan, S.-T. J. Power Sources 2016, 326, 438.  doi: 10.1016/j.jpowsour.2016.06.099

    35. [35]

      Forster, F.; Rendón López, V.-M.; Oestreich, M. J. Am. Chem. Soc. 2018, 140, 1259.  doi: 10.1021/jacs.7b13088

    36. [36]

      Song, X.-R.; Zhang, W.-W.; Li, X.; Jiang, H.-Y.; Shen, C.; Zhu, W.-H. J. Mater. Chem. C 2016, 4, 9203.  doi: 10.1039/C6TC03418G

    37. [37]

      Liu, Y.-H.; Cao, Y.-M.; Zhang, W.-W.; Stojanovic, M.; Dar, M I.; Péchy, P.; Saygili, Y.; Hagfeldt, A.; Zakeeruddin, S. M.; Grätzel, M. Angew. Chem., Int. Ed. 2018, 130, 14321.  doi: 10.1002/ange.201808609

    38. [38]

      Chen, R.-K.; Yang, X.-C.; Tian, H.-N.; Sun, L.-C. J. Photochem. Photobiol. A 2007, 189, 295.  doi: 10.1016/j.jphotochem.2007.02.018

    39. [39]

      Shen, P.; Liu, Y.-J.; Huang, X.-W.; Zhao, B.; Xiang, N.; Fei, J.-J.; Liu, L.-M.; Wang, X.-Y.; Huang, H.; Tan, S.-T. Dyes Pigm. 2009, 83, 187.  doi: 10.1016/j.dyepig.2009.04.005

    40. [40]

      Liu, X.-S.; Cao, Z.-C.; Huang, H.-L.; Liu, X.-X.; Tan, Y.-Z.; Chen, H.-J.; Pei, Y.; Tan, S.-T. J. Power Sources 2014, 248, 400.  doi: 10.1016/j.jpowsour.2013.09.106

    41. [41]

      Hara, K.; Sato, T.; Katoh, R.; Furube, A.; Ohga, Y.; Shinpo, A.; Suga, S.; Sayama, K.; Sugihara, H.; Arakawa, H. J. Phys. Chem. B 2003, 107, 597.  doi: 10.1021/jp026963x

  • 加载中
    1. [1]

      Yuting DUJing YUANPeiyao DENG . Synthesis and application of a fluorescent probe for the detection of reduced glutathione. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461

    2. [2]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    3. [3]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    4. [4]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    5. [5]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    6. [6]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    7. [7]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    8. [8]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    9. [9]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    10. [10]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    11. [11]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    12. [12]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    13. [13]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    14. [14]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    15. [15]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    16. [16]

      Jian Jin Jing Cheng Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010

    17. [17]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    18. [18]

      Xiaohang JINQi LIUJianping LANG . Room‑temperature solid‑state synthesis, structure, and third‑order nonlinear optical properties of phosphine‑ligand‑protected silver thiolate clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1505-1512. doi: 10.11862/CJIC.20250125

    19. [19]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    20. [20]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

Metrics
  • PDF Downloads(6)
  • Abstract views(1131)
  • HTML views(150)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return