Citation: Dai Xuemei, Li Yanjun, Zhang Shaonan, Gong Lei. Visible-Light-Induced[3+2] Annulation of Cyclopropylamines with 1, 2-Diketone Derivatives[J]. Chinese Journal of Organic Chemistry, ;2019, 39(6): 1711-1719. doi: 10.6023/cjoc201902022 shu

Visible-Light-Induced[3+2] Annulation of Cyclopropylamines with 1, 2-Diketone Derivatives

  • Corresponding author: Gong Lei, gongl@xmu.edu.cn
  • Received Date: 21 February 2019
    Revised Date: 27 March 2019
    Available Online: 11 June 2019

    Fund Project: the Natural Science Foundation of Fujian Province 2017J06006the National Natural Science Foundation of China 21572184the Fundamental Research Funds for the Central Universities 20720160027Project supported by the National Natural Science Foundation of China (No. 21572184), the Natural Science Foundation of Fujian Province (No. 2017J06006), and the Fundamental Research Funds for the Central Universities (No. 20720160027)

Figures(3)

  • A visible-light-induced[3+2] annulation of arylcyclopropylamines and 1, 2-diarylethanediones was report. A series of α-amino tetrahydrofuran derivatives were synthesized in moderate to good isolated yields under mild reaction conditions. This method would provide an efficient and convenient approach to α-amino tetrahydrofurans which are potentially important buiding blocks in bioactive compounds.
  • 加载中
    1. [1]

      Cheng, X. H.; Hii, K. K. Tetrahedron 2001, 57, 5445.  doi: 10.1016/S0040-4020(01)00446-X

    2. [2]

      Kunz, K. R.; Iyengar, B. S.; Dorr, R. T.; Alberts, D. S.; Remers, W. A. J. Med. Chem. 1991, 34, 2281.  doi: 10.1021/jm00111a051

    3. [3]

      Lockhoff, O.; Stadler, P. Carbohydr. Res. 1998, 314, 13.  doi: 10.1016/S0008-6215(98)00278-X

    4. [4]

      Takeuchi, Y.; Chang, M. R.; Hashigaki, K.; Yamato, M. Chem. Pharm. Bull. 1991, 39, 1629.  doi: 10.1248/cpb.39.1629

    5. [5]

      (a) Eliel, E. L.; Daignault, R. A. J. Org. Chem. 1965, 30, 2450~2451.
      (b) Glacet, C.; Veron, D. Bull. Soc. Chim. Fr. 1965, 1789.

    6. [6]

      For selected reviews on visible-light photoredox catalysis, see:
      (a) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102.
      (b) Xuan, J.; Xiao, W. J. Angew. Chem., Int. Ed. 2012, 51, 6828.
      (c) Shi, L.; Xia, W. Chem. Soc. Rev. 2012, 41, 7687.
      (d) Xi, Y.; Yi, H.; Lei, A. Org. Biomol. Chem. 2013, 11, 2387.
      (e) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
      (f) Dai, X. J.; Xu, X. L.; Li, X. N. Chin. J. Org. Chem. 2013, 33, 2406 (in Chinese).
      (戴小军, 许孝良, 李小年, 有机化学, 2013, 33, 2406.)
      (g) Guan, B. C.; Xu, X. L.; Wang, H; Li, X. N. Chin. J. Org. Chem. 2016, 36, 1564 (in Chinese).
      (关保川, 许孝良, 王红, 李小年, 有机化学, 2016, 36, 1564.)
      (h) Shaw, M. H.; Twilton, J.; MacMillan, D. W. C. J. Org. Chem. 2016, 81, 6898.
      (i) Skubi, K. L.; Blum, T. R.; Yoon. T. P. Chem. Rev. 2016, 116, 10035.
      (j) Nakajima, K.; Miyake, Y.; Nishibayashi, Y. Acc. Chem. Res. 2016, 49, 1946.
      (k) Liu, W.; Zheng, X. Y.; Zeng, J. G.; Cheng, P. Chin. J. Org. Chem. 2017, 37, 1 (in Chinese).
      (刘薇, 郑昕宇, 曾建国, 程辟, 有机化学, 2017, 37, 1.)
      (l) Ruan, L. H.; Dong, Z. C.; Chen, C. X.; Wu, S.; Sun, J. Chin. J. Org. Chem. 2017, 37, 2544 (in Chinese).
      (阮利衡, 董振诚, 陈春欣, 吴爽, 孙京, 有机化学, 2017, 37, 2544.)
      (m) Dai, X. Q.; Zhu, Y. B.; Xu, X. L.; Weng, J. Q. Chin. J. Org. Chem. 2017, 37, 577 (in Chinese).
      (戴小强, 朱亚波, 许孝良, 翁建全, 有机化学, 2017, 37, 577.)
      (n) Xu, W. X.; Dai, X. Q; Xu, H. J.; Weng, J. Q. Chin. J. Org. Chem. 2018, 38, 2807 (in Chinese).
      (徐雯秀, 戴小强, 徐涵靖, 翁建全, 有机化学, 2018, 38, 2807.)
      (o) Bai, Q. F.; He, J. Y.; Zhu, X. Q.; Feng, G. F.; Jin, C. A. Chin. J. Org. Chem. 2019, 39, 527 (in Chinese).
      (白其凡, 何静耀, 祝小青, 冯高峰, 金城安, 有机化学, 2019, 39, 527.)

    7. [7]

      For examples of visible-light photoredox catalysis, see:
      (a) Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322, 77.
      (b) DiRocco, D. A.; Rovis, T. J. Am. Chem. Soc. 2012, 134, 8094.
      (c) Rono, L. J.; Yayla, H. G.; Wang, D. Y.; Armstrong, M. F.; Knowles, R. R. J. Am. Chem. Soc. 2013, 135, 17735.
      (d) Alonso, R.; Bach, T. Angew. Chem., Int. Ed. 2014, 53, 4368.
      (e) Huo, H. H.; Shen, X. D.; Wang, C. Y.; Zhang, L. L.; Rose, P.; Chen, L. A.; Harms, K.; Marsch, M.; Hilt, G.; Meggers, E. Nature 2014, 515, 100.
      (f) Espelt, L. R.; McPherson, I. S.; Wiensch, E. M. Yoon, T. P. J. Am. Chem. Soc. 2015, 137, 2452.
      (g) Ding, W.; Lu, L. Q.; Zhou, Q. Q.; Wei, Y.; Chen, J. R.; Xiao, W. J. J. Am. Chem. Soc. 2017, 139, 63.
      (h) Ding, W.; Lu, L. Q.; Zhou, Q. Q.; Wei, Y.; Chen, J. R.; Xiao, W. J. J. Am. Chem. Soc. 2017, 139, 63.
      (i) Zhou, Q. Q.; Liu, D.; Xiao, W. J.; Lu, L. Q. Acta Chim. Sinica 2017, 75, 110 (in Chinese).
      (周泉泉, 刘丹, 肖文精, 陆良秋, 化学学报, 2017, 75, 110.)
      (j) Wu, Z. J.; Wang, J. Acta Chim. Sinica 2017, 75, 74 (in Chinese).
      (吴自俊, 汪舰, 化学学报, 2017, 75, 74.)
      (k) Wu, J.; Li, J. W.; Li, H.; Zhu, C. Y. Chin. J. Org. Chem. 2017, 37, 2203 (in Chinese).
      (吴江, 李嘉雯, 李昊, 朱纯银, 有机化学, 2017, 37, 2203.)
      (l) Ye, H; Xiao, C; Lu, L. Q. Chin. J. Org. Chem. 2018, 38, 1897 (in Chinese).(叶辉, 肖聪, 陆良秋, 有机化学, 2018, 38, 1897.)

    8. [8]

      (a) Kohls, P.; Jadhav, D.; Pandey, G.; Reiser, O. Org. Lett. 2012, 14, 672.
      (b) Miyake, Y.; Nakajima, K.; Nishibayashi, Y. J. Am. Chem. Soc. 2012, 134, 3338.
      (c) Espelt, L. R.; McPherson, I. S.; Wiensch, E. M.; Yoon, T. P. J. Am. Chem. Soc. 2015, 137, 2452.

    9. [9]

      Tan, Y. Q.; Yuan, W.; Gong, L.; Meggers, E. Angew. Chem., Int. Ed. 2015, 54, 13045.  doi: 10.1002/anie.v54.44

    10. [10]

      (a) Maity, S.; Zhu, M. Z.; Shinabery, R. S.; Zheng, N. Angew. Chem., Int. Ed. 2012, 51, 222.
      (b) Nguyen, T. H.; Maity, S.; Zheng, N. Beilstein J. Org. Chem. 2014, 10, 975.
      (c) Staveness, D.; Sodano, T. M.; Li, K. J.; Burnham, E. A.; Jackson, K. D.; Stephenson, C. R. J. Chem 2019, 5, 1.

    11. [11]

      (a) Russell, G. A.; Weiner, S. A. J. Am. Chem. Soc. 1967, 89, 6623.
      (b) Ma, J. J.; Rosales, A. R.; Huang, X. Q.; Harms, K.; Riedel R.; Wiest, O.; Meggers, E. J. Am. Chem. Soc. 2017, 139, 17245.

    12. [12]

      Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.  doi: 10.1021/cr300503r

    13. [13]

      Reger, D.; Haines P.; Heinemann, F. W.; Guldi, D. M.; Jux, N. Angew. Chem., Int. Ed. 2018, 57, 5938.  doi: 10.1002/anie.201800585

    14. [14]

      Cui, W.; Loeppky, R. N. Tetrahedron 2001, 57, 2953.  doi: 10.1016/S0040-4020(01)00118-1

  • 加载中
    1. [1]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

    2. [2]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    3. [3]

      Ruolin CHENGYue WANGXiyao NIUHuagen LIANGLing LIUShijian LU . Efficient photothermal catalytic CO2 cycloaddition over W18O49/rGO composites. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1276-1284. doi: 10.11862/CJIC.20240424

    4. [4]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    5. [5]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    6. [6]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Zhanhui Yang Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032

    9. [9]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    10. [10]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    11. [11]

      Tao Wen Tao Zhang Changguo Sun Jinyu Liu . Preparation of Dess-Martin Reagent and Its Application in Oxidizing Cyclohexanol. University Chemistry, 2024, 39(5): 20-26. doi: 10.3866/PKU.DXHX202309055

    12. [12]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    13. [13]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    14. [14]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    15. [15]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    16. [16]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    17. [17]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    18. [18]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    19. [19]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    20. [20]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

Metrics
  • PDF Downloads(19)
  • Abstract views(994)
  • HTML views(159)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return