Citation: Du Shanshan, Chai Zhengqi, Hu Jingyuan, Zhang Wen-Xiong, Xi Zhenfeng. Isolation and Characterization of a Trinuclear Rare-Earth Metal Complex Containing a Bicyclo[3.1.0]-P64- Ligand[J]. Chinese Journal of Organic Chemistry, ;2019, 39(8): 2338-2342. doi: 10.6023/cjoc201902016 shu

Isolation and Characterization of a Trinuclear Rare-Earth Metal Complex Containing a Bicyclo[3.1.0]-P64- Ligand

  • Corresponding author: Zhang Wen-Xiong, wx_zhang@pku.edu.cn
  • Received Date: 18 February 2019
    Revised Date: 25 March 2019
    Available Online: 2 August 2019

    Fund Project: the National Natural Science Foundation of China 21725201the National Natural Science Foundation of China 21572005Project supported by the National Natural Science Foundation of China (Nos. 21725201, 21890721, 21572005)the National Natural Science Foundation of China 21890721

Figures(5)

  • Direct synthesis of organophosphorus compounds from white phosphorus (P4) is of great significance because this process avoids the industry pollution synthetic methods and provides the possibilities for many novel phosphorus-containing compounds. A trinuclear rare-earth metal complex[{(η5-C5Me5)LuCl}3(THF)P6] [Li(THF)4] from lutetacyclopentadiene mediated P4 functionalization was isolated and characterized. This novel complex contains a bicyclo[3.1.0]-P64- ligand which is an unreported type. X-ray diffraction analysis shows that the bicyclo[3.1.0]-P64- ligand adopts a boat-like conformation. Three lutetium atoms coordinate to this ligand in η1, η3, η3 mode, respectively, and a novel[P6Lu3] cage has been formed. Density functional theory (DFT) calculations indicate that there are two three-center two-electron bonds.
  • 加载中
    1. [1]

      (a) Cossairt, B. M.; Piro, N. A.; Cummins, C. C. Chem. Rev. 2010, 110, 4164.
      (b) Caporali, M.; Gonsalvi, L.; Rossin, A.; Peruzzini, M. Chem. Rev. 2010, 110, 4178.
      (c) Scheer, M.; Balázs, G.; Seitz, A. Chem. Rev. 2010, 110, 4236.
      (d) Khan, S.; Sen, S. S.; Roesky, H. W. Chem. Commun. 2012, 48, 2169.

    2. [2]

      (a) Martin, C. D.; Weinstein, C. M.; Moore, C. E.; Rheingold, A. L.; Bertrand, G. Chem. Commun. 2013, 49, 4486.
      (b) Borger, J. E.; Ehlers, A. W.; Lutz, M.; Slootweg, J. C.; Lammertsma, K. Angew. Chem., Int. Ed. 2014, 53, 12836.
      (c) Arrowsmith, M.; Hill, M. S.; Johnson, A. L.; Kociok-Köhn, G.; Mahon, M. F. Angew. Chem., Int. Ed. 2015, 54, 7882.

    3. [3]

      (a) Piro, N. A.; Figueroa, J. S.; McKellar, J. T.; Cummins, C. C. Science 2006, 313, 1276.
      (b) Camp, C.; Maron, L.; Bergman, R. G.; Arnold, J. J. Am. Chem. Soc. 2014, 136, 17652.
      (c) Pinter, B.; Smith, K. T.; Kamitani, M.; Zolnhofer, E. M.; Tran, B. L.; Fortier, S.; Pink, M.; Wu, G.; Manor, B. C.; Meyer, K.; Baik, M.-H.; Mindiola, D. J. J. Am. Chem. Soc. 2015, 137, 15247.

    4. [4]

      (a) Zarzycki, B.; Bickelhaupt, F. M.; Radius, U. Dalton Trans. 2013, 42, 7468.
      (b) Yao, S.; Lindenmaier, N.; Xiong, Y.; Inoue, S.; Szilvási, T.; Adelhardt, M.; Sutter, J.; Meyer, K.; Driess, M. Angew. Chem., Int. Ed. 2015, 54, 1250.
      (c) Spitzer, F.; Graß l, C.; Balázs, G.; Zolnhofer, E. M.; Meyer, K.; Scheer, M. Angew. Chem., Int. Ed. 2016, 55, 4340.
      (d) Pelties, S.; Maier, T.; Herrmann, D.; de Bruin, B.; Rebreyend, C.; Gärtner, S.; Shenderovich, I. G.; Wolf, R. Chem. Eur. J. 2017, 23, 6094.

    5. [5]

      Mathey, F. Angew. Chem., Int. Ed. 2003, 42, 1578.  doi: 10.1002/anie.200200557

    6. [6]

      Scherer, O. J.; Sitzmann, H.; Wolmershäuser, G. Angew. Chem., Int. Ed. Engl. 1985, 24, 351.  doi: 10.1002/anie.198503511

    7. [7]

      Fleischmann, M.; Heindl, C.; Seidl, M.; Balázs, G.; Virovets, A. V.; Peresypkina, E. V.; Tsunoda, M.; Gabbaï, F. P.; Scheer, M. Angew. Chem., Int. Ed. 2012, 51, 9918.  doi: 10.1002/anie.201204686

    8. [8]

      (a) Warren, D. S.; Gimarc, B. M. J. Am. Chem. Soc. 1992, 114, 5378.
      (b) Hiberty, P. C.; Volatron, F. Heteroat. Chem. 2007, 18, 129.

    9. [9]

      Scherer, O. J.; Swarowsky, H.; Wolmershäuser, G.; Kaim, W.; Kohlmann, S. Angew. Chem., Int. Ed. Engl. 1987, 26, 1153.  doi: 10.1002/anie.198711531

    10. [10]

      Scherer, O. J.; Schwalb, J.; Swarowsky, H.; Wolmershäuser, G.; Kaim, W.; Gross, R. Chem. Ber. 1988, 121, 443.  doi: 10.1002/cber.19881210309

    11. [11]

      Scherer, O. J.; Vondung, J.; Wolmershäuser, G. Angew. Chem., Int. Ed. Engl. 1989, 28, 1355.  doi: 10.1002/anie.198913551

    12. [12]

      Scherer, O. J.; Werner, B.; Heckmann, G.; Wolmershäuser, G. Angew. Chem., Int. Ed. Engl. 1991, 30, 553.  doi: 10.1002/anie.199105531

    13. [13]

      Hulley, E. B.; Wolczanski, P. T.; Lobkovsky, E. B. Chem. Commun. 2009, 6412.

    14. [14]

      Arleth, N.; Gamer, M. T.; Köppe, R.; Pushkarevsky, N. A.; Konchenko, S. A.; Fleischmann, M.; Bodensteiner, M.; Scheer, M.; Roesky, P. W. Chem. Sci. 2015, 6, 7179.  doi: 10.1039/C5SC02252E

    15. [15]

      Vaira, M. D.; Stoppioni, P. Polyhedron 1994, 13, 3045.  doi: 10.1016/S0277-5387(00)83669-4

    16. [16]

      Wiśniewska, A.; Łapczuk-Krygier, A.; Baranowska, K.; Chojnacki, J.; Matern, E.; Pikies, J.; Grubba, R. Polyhedron 2013, 55, 45.  doi: 10.1016/j.poly.2013.02.046

    17. [17]

      (a) Konchenko, S. N.; Pushkarevsky, N. A.; Gamer, M. T.; Köppe, R.; Schnöckel, H.; Roesky, P. W. J. Am. Chem. Soc. 2009, 131, 5740.
      (b) Huang, W.; Diaconescu, P. L. Chem. Commun. 2012, 48, 2216.
      (c) Huang, W.; Diaconescu, P. L. Eur. J. Inorg. Chem. 2013, 4090.
      (d) Selikhov, A. N.; Mahrova, T. V.; Cherkasov, A. V.; Fukin, G. K.; Kirillov, E.; Lamsfus, C. A.; Maron, L.; Trifonov, A. A. Organometallics 2016, 35, 2401.
      (e) Schoo, C.; Bestgen, S.; Köppe, R.; Konchenko, S. N.; Roesky, P. W. Chem. Commun. 2018, 54, 4770.

    18. [18]

      Ma, W.; Yu, C.; Chen, T.; Xu, L.; Zhang, W.-X.; Xi, Z. Chem. Soc. Rev. 2017, 46, 1160.  doi: 10.1039/C6CS00525J

    19. [19]

      (a) Xu, L.; Chi, Y.; Du, S.; Zhang, W.-X.; Xi, Z. Angew. Chem., Int. Ed. 2016, 55, 9187.
      (b) Du, S.; Yin, J.; Chi, Y.; Xu, L.; Zhang, W.-X. Angew. Chem., Int. Ed. 2017, 56, 15886.
      (c) Du, S.; Zhang, W.-X.; Xi, Z. Organometallics 2018, 37, 2018.
      (d) Du, S.; Hu, J.; Chai, Z.; Zhang, W.-X.; Xi, Z. Chin. J. Chem. 2019, 37, 71.

    20. [20]

      (a) Nief, F.; Mathey, F. J. Chem. Soc., Chem. Commun. 1989, 800.
      (b) Fontaine, F.-G.; Tupper, K. A.; Tilley, T. D. J. Organomet. Chem. 2006, 691, 4595.

    21. [21]

      (a) Jaroschik, F.; Shima, T.; Li, X.; Mori, K.; Ricard, L.; Le Goff, X.-F.; Nief, F.; Hou, Z. Organometallics 2007, 26, 5654.
      (b) Xu, Y.; Wang, Z.; Gan, Z.; Xi, Q.; Duan, Z.; Mathey, F. Org. Lett. 2015, 17, 1732.

    22. [22]

      (a) Zhang, L.; Suzuki, T.; Luo, Y.; Nishiura, M.; Hou, Z. Angew. Chem., Int. Ed. 2007, 46, 1909.
      (b) Masuda, J. D.; Jantunen, K. C.; Ozerov, O. V.; Noonan, K. J. T.; Gates, D. P.; Scott, B. L.; Kiplinger, J. L. J. Am. Chem. Soc. 2008, 130, 2408.

    23. [23]

      (a) Turbervill, R. S. P.; Goicoechea, J. M. Chem. Rev. 2014, 114, 10807; (b) Hennersdorf, F.; Frötschel, J.; Weigand, J. J. J. Am. Chem. Soc. 2017, 139, 14592.

    24. [24]

      Baudler, M.; Aktalay, Y.; Tebbe, K. F.; Heinlein, T. Angew. Chem., Int. Ed. Engl. 1981, 20, 967.
       

    25. [25]

      Jutzi, P.; Kroos, R.; Möller, A.; Bögger, H.; Penk, M. Chem. Ber. 1991, 124, 75.  doi: 10.1002/cber.19911240112

    26. [26]

      (a) Xu, L.; Wang, Y.-C.; Wei, J.; Wang, Y.; Wang, Z.; Zhang, W.-X.; Xi, Z. Chem. Eur. J. 2015, 21, 6686.
      (b) Xu, L.; Wei, J.; Zhang, W.-X.; Xi, Z. Chem. Eur. J. 2015, 21, 15860.
      (c) Xu, L.; Wang, Y.; Wang, Y.-C.; Wang, Z.; Zhang, W.-X.; Xi, Z. Organometallics 2016, 35, 5.

    27. [27]

      Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. 2009, 42, 339.  doi: 10.1107/S0021889808042726

    28. [28]

      Palatinus, L.; Chapuis, G. J. Appl. Cryst. 2007, 40, 786.  doi: 10.1107/S0021889807029238

  • 加载中
    1. [1]

      Yanrui Liu Paramaguru Ganesan Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369

    2. [2]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    3. [3]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    4. [4]

      Ruike HuKangmin WangJunxiang LiuJingxian ZhangGuoliang YangLiqiu WanBijin Li . Extended π-conjugated systems by external ligand-assisted C−H olefination of heterocycles: Facile access to single-molecular white-light-emitting and NIR fluorescence materials. Chinese Chemical Letters, 2025, 36(4): 110113-. doi: 10.1016/j.cclet.2024.110113

    5. [5]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

    6. [6]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    7. [7]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    8. [8]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    9. [9]

      Bofei JIAZhihao LIUZongyuan GAOShuai ZHOUMengxiang WUQian ZHANGXiamei ZHANGShuzhong CHENXiaohan YANGYahong LI . Cu(Ⅱ) and Cu(Ⅰ) complexes based on derivatives of imidazo[1,5-a]pyridine: Synthesis, structures, in situ metal-ligand reactions, and catalytic activity. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1020-1036. doi: 10.11862/CJIC.20240317

    10. [10]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    11. [11]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    12. [12]

      Xue-Jiao WangJun-Li XinHong XiangZe-Yu ZhaoYu-Hang HeHaibo WangGuangyao MeiYi-Cheng MaoJuan XiongJin-Feng Hu . Holotrichones A and B, potent anti-leukemic lindenane-type sesquiterpene trimers with unprecedented complex carbon skeletons from a rare Chloranthus species. Chinese Chemical Letters, 2024, 35(12): 109682-. doi: 10.1016/j.cclet.2024.109682

    13. [13]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    14. [14]

      Yinyin XuYuanyuan LiJingbo FengChen WangYan ZhangYukun WangXiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838

    15. [15]

      Boqiang WangYongzhuo XuJiajia WangMuyang YangGuo-Jun DengWen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502

    16. [16]

      Yanjun CaiYong JiangYu ChenErzhuo ChengYuan GuYuwei LiQianqian LiuJian ZhangJifang LiuShisong HanBin Yang . Amplifying STING activation and immunogenic cell death by metal-polyphenol coordinated nanomedicines for enhanced cancer immunotherapy. Chinese Chemical Letters, 2025, 36(5): 110437-. doi: 10.1016/j.cclet.2024.110437

    17. [17]

      Haiming WuGaya N. AndrewRajini AnumulaZhixun Luo . Corrigendum to 'How ligand coordination and superatomic-states accommodate the structure and property of a metal cluster: Cu4 (dppy)4 Cl2 vs. Cu21 (dppy)10 with altered photoluminescence' [Chin. Chem. Lett. 35 (2024) 108340]. Chinese Chemical Letters, 2024, 35(12): 109912-. doi: 10.1016/j.cclet.2024.109912

    18. [18]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    19. [19]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    20. [20]

      Yizhe ChenYuzhou JiaoLiangyu SunCheng YuanQian ShenPeng LiShiming ZhangJiujun Zhang . Nonmetallic phosphorus alloying to regulate the oxygen reduction mechanisms of platinum catalyst. Chinese Chemical Letters, 2025, 36(4): 110789-. doi: 10.1016/j.cclet.2024.110789

Metrics
  • PDF Downloads(4)
  • Abstract views(757)
  • HTML views(122)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return