Citation: Li Yingjun, Zhao Yue, Jin Kun, Gao Lixin, Sheng Li, Liu Xuejie, Yang Hongjing, Lin Ledi, Li Jia. Synthesis and PTP1B/TCPTP Inhibitory Activity Evaluation of Novel 2, 5-Disubstituted-1, 3, 4-thiadiazolamide Derivatives Containing Carbazole/Benzimidazole Moity[J]. Chinese Journal of Organic Chemistry, ;2019, 39(9): 2599-2608. doi: 10.6023/cjoc201901013 shu

Synthesis and PTP1B/TCPTP Inhibitory Activity Evaluation of Novel 2, 5-Disubstituted-1, 3, 4-thiadiazolamide Derivatives Containing Carbazole/Benzimidazole Moity

  • Corresponding author: Li Yingjun, chemlab.lnnu@163.com Li Jia, jli@simm.ac.cn
  • Received Date: 10 January 2019
    Revised Date: 12 April 2019
    Available Online: 16 September 2019

    Fund Project: Project supported by the Natural Science Foundation of Liaoning Province (No. 20102126)the Natural Science Foundation of Liaoning Province 20102126

Figures(8)

  • A series of novel 2, 5-disubstituted-1, 3, 4-thiadiazolamide derivatives containing carbazole/benzimidazole moity were synthesized. Their structures were characterized by IR, 1H NMR, 13C NMR spectra and elemental analysis. All synthesized target compounds were evaluated for the inhibitory activities against protein tyrosine phosphatase 1B (PTP1B) and T-cell protein tyrosine phosphatase (TCPTP). The structure-activity relationship was discussed. The results showed that most of compounds had good inhibitory activity against PTP1B over the highly homologous TCPTP, and 2-(9-carbazolylmethylene)-5-(3-chlorobenzoylamino)-1, 3, 4-thiadiazole (5c) displayed the highest inhibitory activity against PTP1B[IC50=(2.43±0.43) μg/mL]. The inhibitory activities of 2-(9-carbazolylmethylene)-5-(4-methylbenzoylamino)-1, 3, 4-thiadiazole (5b) and 5c against PTP1B were higher than that of positive control oleanolic acid. Molecular docking and density functional theory (DFT) calculations of the target compound 5c were performed. The docking result showed that compound 5c and PTP1B enzyme formed a stable complex by hydrogen bonds, hydrophobic and π-π interactions.
  • 加载中
    1. [1]

      Lima, R. C. L.; Kato, L.; Kongstad, K. T.; Staerk, D. J. Funct. Foods 2018, 45, 444.  doi: 10.1016/j.jff.2018.04.019

    2. [2]

      Costa, F. N.; Ibiapino, A. L.; Figueiredo, L. P.; Barreiro, E. J.; Lima, L. M.; Amaral, D. N.; Castro, C. E.; Giacomelli, F. C.; Ferreira, F. F. J. Phys.: Conf. Ser. 2015, 617, 012015.  doi: 10.1088/1742-6596/617/1/012015

    3. [3]

      Dong. S. Z.; Lei, Y. B.; Jia, S. K.; Gao, L. X.; Li, J.; Zhu, T.; Liu, S. Y.; Hu, W. H. Bioorg. Med. Chem. Lett. 2017, 27, 1105.  doi: 10.1016/j.bmcl.2016.11.055

    4. [4]

      Kostrzewa, T.; Sahu, K. K.; Ponikowska, M. G.; Tuszynski, J. A.; Jankowska, A. K. Drug Des., Dev. Ther. 2018, 12, 4139.  doi: 10.2147/DDDT.S186614

    5. [5]

      He, R. J.; Yu, Z. H.; Zhang, R. Y.; Zhang, Z. Y. Acta Pharmacol. Sin. 2014, 35, 1227.  doi: 10.1038/aps.2014.80

    6. [6]

      Galic, S.; Hauser, C.; Kahn, B. B.; Haj, F. G.; Neel, B. G.; Tonks, N. K.; Tiganis, T. Mol. Cell. Biol. 2005, 25, 819.  doi: 10.1128/MCB.25.2.819-829.2005

    7. [7]

      Du, Y. L.; Zhang, Y. H.; Ling, H.; Li, Q. Y.; Shen, J. K. Eur. J. Med. Chem. 2018, 144, 692.  doi: 10.1016/j.ejmech.2017.12.064

    8. [8]

      Mougenot, P.; Namane, C.; Fett, E.; Camy, F.; Dadji-Faïhun, R.; Langot, G.; Monseau, C.; Onofri, B.; Pacquet, F.; Pascal, C.; Crespin, O.; Ben-Hassine, M.; Ragot, J. L.; Van-Pham, T.; Philippo, C.; Chatelain-Egger, F.; Péron, P.; Bail, J. C. L.; Guillot, E.; Chamiot-Clerc, P.; Chabanaud, M. A.; Pruniaux, M. P.; Schmidt, F.; Venier, O.; Nicolaï, E.; Viviani, F. Bioorg. Med. Chem. Lett. 2012, 22, 2497.  doi: 10.1016/j.bmcl.2012.02.006

    9. [9]

      Li, Y. J.; Yu, Y.; Jin, K.; Gao, L. X.; Luo, T. C.; Sheng, L.; Shao, X.; Li, J. Bioorg. Med. Chem. Lett. 2014, 24, 4125.  doi: 10.1016/j.bmcl.2014.07.055

    10. [10]

      Li, L.; Meng, Y.; Li, Z. Y.; Dai, W. H.; Xu, Xi.; Bi, X. L.; Bian, J. L. Eur. J. Med. Chem. 2019, 163, 215.  doi: 10.1016/j.ejmech.2018.11.066

    11. [11]

      Xu, X.; Meng, Y.; Li, L.; Xu, P. F.; Wang, J. B.; Li, Z. Y.; Bian, J. L. J. Med. Chem. 2018, 62, 1096.

    12. [12]

      Kulshreshtha, A.; Piplani, P. Eur. J. Med. Chem. 2016, 122, 557.  doi: 10.1016/j.ejmech.2016.06.046

    13. [13]

      Lee, E. C. Y.; Futatsugi, K.; Arcari, J. T.; Bahnck, K.; Coffey, S. B.; Derksen, D. R.; Kalgutkar, A. S.; Loria, P. M.; Sharma, R. Bioorg. Med. Chem. Lett. 2016, 26, 2670.  doi: 10.1016/j.bmcl.2016.04.009

    14. [14]

      Jakovljević, K.; Matić, I. Z.; Stanojković, T.; Krivokuća, A.; Marković, V.; Joksović, M. D.; Mihailović, N.; Nićiforović, M.; Joksović, L. Bioorg. Med. Chem. Lett. 2017, 27, 3709.  doi: 10.1016/j.bmcl.2017.07.003

    15. [15]

      Gao, Y. Q.; Li, J.; Song, Z. Q.; Song, J.; Shang, S. B.; Xiao, G. M.; Wang, Z. D.; Rao, X. P. Ind. Crops Prod. 2015, 76, 660.  doi: 10.1016/j.indcrop.2015.07.067

    16. [16]

      Li, Y.-J.; Wang, S.-Y.; Jin, K.; Gao, L.-X.; Sheng, L.; Zhang, N.; Liu, J.-H.; Li, J. Chin. J. Org. Chem. 2019, 39, 491 (in Chinese).
       

    17. [17]

      Salih, N.; Salimon, J.; Yousif, E. Arabian J. Chem. 2016, 9, S781.  doi: 10.1016/j.arabjc.2011.08.013

    18. [18]

      Aboul-Enein, H. Y.; El Rashedy, A. A. Med. Chem. 2015, 5, 318.

    19. [19]

      George, M.; Joseph, L.; Kumar, U. Int. J. Curr. Res. Chem. Pharm. Sci. 2017, 4, 38.  doi: 10.22192/ijcrcps.2017.04.07.008

    20. [20]

      Akhtar, W.; Khan, M. F.; Verma, G.; Shaquiquzzaman, M.; Rizvi, M. A.; Mehdi, S. H.; Akhter, M.; Alam, M. M. Eur. J. Med. Chem. 2017, 126, 705.  doi: 10.1016/j.ejmech.2016.12.010

    21. [21]

      Özil, M.; Emirik, M.; Etlik, S. Y.; Ülker, S.; Kahveci, B. Bioorg. Chem. 2016, 68, 226.  doi: 10.1016/j.bioorg.2016.08.011

    22. [22]

      Rashid, M.; Husain, A.; Mishra, R.; Karim, S.; Khan, S.; Ahmad, M.; Al-wabel, N.; Husain, A.; Ahmad, A.; Khan, S. A. Arabian J. Chem. 2015, DOI: org/101016/j.rabjc.2015.08.019.

    23. [23]

      Shah, P. B, Darji, N.; Patel, B. Int. J. Inst. Pharma. Life Sci. 2012, 2, 2249.

    24. [24]

      Abdel-Rahman, T. M. Phosphorus, Sulfur Silicon Relat. Elem. 2006, 181, 1737.  doi: 10.1080/10426500500536572

    25. [25]

      Redayan, M. A.; Ali, W. B.; Mohammed, A. M. Orient. J. Chem. 2017, 33, 3138.  doi: 10.13005/ojc/330656

    26. [26]

      Kaplancıklı, Z. A. Marmara Pharm. J. 2011, 15, 105.

    27. [27]

      Khan, I.; Tantray, M. A.; Hamid, H.; Alam, M. S.; Kalam, A.; Dhulap, A. Bioorg. Med. Chem. Lett. 2016, 26, 4020.  doi: 10.1016/j.bmcl.2016.06.084

    28. [28]

      Kaur, H.; Kumar, S.; Vishwakarma, P.; Sharma, M.; Saxena, K. K.; Kumar, A. Eur. J. Med. Chem. 2010, 45, 2777.  doi: 10.1016/j.ejmech.2010.02.060

    29. [29]

      Kuş, C.; Ayhan-Kılcıgil, G.; Özbey, S.; Kaynak, F. B.; Kaya, M.; Çoban, T.; Can-Eke, B. Bioorg. Med. Chem. 2008, 16, 4294.  doi: 10.1016/j.bmc.2008.02.077

    30. [30]

      Li, Y.-J.; Wang, S.-Y.; Jin, K.; Gao, L.-X.; Sheng, L.; Zhang, N.; Yang, K.-D.; Zhao, Y.; Li, J. Chin. J. Org. Chem. 2018, 38, 1242 (in Chinese).
       

    31. [31]

      Li, Y.-J.; Li, J.-Y.; Peng, L.-N.; Gao, L.-X.; Jin, K.; Sheng, L.; Zhang, N.; Wang, S.-Y.; Li, J. Chin. J. Org. Chem. 2017, 37, 485 (in Chinese).
       

    32. [32]

      Li, Y.-J.; Sun, Y.-Z.; Jin, K.; Xu, Y.-T.; Sun, S.-Q. Chin. J. Org. Chem. 2008, 28, 1074 (in Chinese).
       

    33. [33]

      Tiganis, T. FEBS J. 2013, 280, 445.  doi: 10.1111/j.1742-4658.2012.08563.x

    34. [34]

      Li, Y.-J.; Yu, Y.; Jin, K.; Gao, L.-X.; Luo, T.-C.; Sheng, L.; Sao, X.; Li, J. Chin. J. Org. Chem. 2015, 35, 129 (in Chinese).
       

    35. [35]

      Zhang, X. J.; Tian, Y. P.; Li, S. L.; Jiang, M. H.; Usman, A.; Chantrapromma, S.; Fun, H. K. Polyhedron 2003, 22, 397.  doi: 10.1016/S0277-5387(02)01360-8

    36. [36]

      Lamani, R. S.; Shetty, N. S.; Kamble, R. R.; Khazi, I. A. M. Eur. J. Med. Chem. 2009, 44, 2828.  doi: 10.1016/j.ejmech.2008.12.019

    37. [37]

      Wei, T.-B.; Chen, J.-C.; Wang, X.-C.; Yang, S.-Y. Chem. J. Chin. Univ. 1992, 13, 1217 (in Chinese).
       

    38. [38]

      Sun, L. P.; Shen, Q.; Piao, H. H.; Ma, W. P.; Gao, L. X.; Zhang, W.; Nan, F. J.; Li, J.; Piao, H. R. Eur. J. Med. Chem. 2011, 46, 3630.  doi: 10.1016/j.ejmech.2011.05.027

  • 加载中
    1. [1]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    2. [2]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    3. [3]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    4. [4]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    5. [5]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    6. [6]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    7. [7]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    8. [8]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    9. [9]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

    10. [10]

      Liping GUO . Synthesis and crystal structure characterization of yttrium imido complex: The reactivity of 2-substituted-1-amino-o-carborane with yttrium dialkyl complex. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1409-1415. doi: 10.11862/CJIC.20250065

    11. [11]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    12. [12]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    13. [13]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    14. [14]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    15. [15]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    16. [16]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    17. [17]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    18. [18]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    19. [19]

      Huijuan Liao Yulin Xiao Dong Xue Mingyu Yang Jianyang Dong . Synthesis of 1-Benzyl Isoquinoline via the Minisci Reaction. University Chemistry, 2025, 40(7): 294-299. doi: 10.12461/PKU.DXHX202409092

    20. [20]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

Metrics
  • PDF Downloads(6)
  • Abstract views(1245)
  • HTML views(95)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return